Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 223, Number 1, Pages 84–113
DOI: https://doi.org/10.4213/tmf10842
(Mi tmf10842)
 

Equivalence of two constructions for ^sl2-integrable hierarchies

Panpan Danga, Yajuan  Lia, Yuanyuan Zhanga, Jipeng Chengab

a School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu, China
b Jiangsu Center for Applied Mathematics (CUMT), Xuzhou, Jiangsu, China
References:
Abstract: We discuss the equivalence between the Date–Jimbo–Kashiwara–Miwa (DJKM) construction and the Kac–Wakimoto (KW) construction of ^sl2-integrable hierarchies within the framework of bilinear equations. The DJKM method has achieved remarkable success in constructing integrable hierarchies associated with classical A, B, C, D affine Lie algebras. In contrast, the KW method exhibits broader applicability, as it can be employed even for exceptional E, F, G affine Lie algebras. However, a significant drawback of the KW construction lies in the great difficulty of obtaining Lax equations for the corresponding integrable hierarchies. Conversely, in the DJKM construction, Lax structures for numerous integrable hierarchies can be derived. The derivation of Lax equations from bilinear equations in the KW construction remains an open problem. Consequently, demonstrating the equivalent DJKM construction for the integrable hierarchies obtained via the KW construction would be highly beneficial for obtaining the corresponding Lax structures. In this paper, we use the language of lattice vertex algebras to establish the equivalence between the DJKM and KW methods in the ^sl2-integrable hierarchy for principal and homogeneous representations.
Keywords: ^sl2-integrable hierarchy, Kac–Wakimoto construction, Date–Jimbo–Kashiwara–Miwa construction, bilinear equations, Lax equations, lattice vertex algebra.
Funding agency Grant number
National Natural Science Foundation of China 12171472
12261072
Qinglan Project
This work was supported by the National Natural Science Foundation of China (grant Nos. 12171472 and 12261072) and the “Qinglan Project” of Jiangsu Universities.
Received: 16.10.2024
Revised: 04.02.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 223, Issue 1, Pages 597–623
DOI: https://doi.org/10.1134/S0040577925040063
Document Type: Article
PACS: 02.30.Ik
Language: Russian
Citation: Panpan Dang, Yajuan  Li, Yuanyuan Zhang, Jipeng Cheng, “Equivalence of two constructions for ^sl2-integrable hierarchies”, TMF, 223:1 (2025), 84–113; Theoret. and Math. Phys., 223:1 (2025), 597–623
Citation in format AMSBIB
\Bibitem{DanLiZha25}
\by Panpan~Dang, Yajuan~~Li, Yuanyuan~Zhang, Jipeng~Cheng
\paper Equivalence of two constructions for $\widehat{sl}_2$-integrable hierarchies
\jour TMF
\yr 2025
\vol 223
\issue 1
\pages 84--113
\mathnet{http://mi.mathnet.ru/tmf10842}
\crossref{https://doi.org/10.4213/tmf10842}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 223
\issue 1
\pages 597--623
\crossref{https://doi.org/10.1134/S0040577925040063}
Linking options:
  • https://www.mathnet.ru/eng/tmf10842
  • https://doi.org/10.4213/tmf10842
  • https://www.mathnet.ru/eng/tmf/v223/i1/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:61
    References:6
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025