Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 221, Number 1, Pages 70–96
DOI: https://doi.org/10.4213/tmf10736
(Mi tmf10736)
 

Quasi-Grammian soliton and kink dynamics of an M-component semidiscrete coupled integrable system

A. Inam, M. ul Hassan

Department of Physics, University of the Punjab, Lahore, Pakistan
References:
Abstract: We investigate the standard binary Darboux transformation (SBDT) for an M-component sdC integrable system. For this, we construct the Darboux matrix using specific eigenvector solutions associated to the Lax pair, not only in the direct space but also in the adjoint space, resulting in the binary Darboux matrix. By the iterative application of the SBDT, we derive quasi-Grammian soliton solutions of the M-component sdC integrable system. We also examine the Darboux transformation (DT) applied to matrix solutions of the sdC integrable system, expressing solutions using quasideterminants. Additionally, we thoroughly discuss the DT applied to scalar solutions of the system, expressing solutions as ratios of determinants. Furthermore, we investigate the SBDT and its application to obtaining quasi-Grammian multikink and multisoliton solutions for the M-component sdC integrable system. Additionally, we demonstrate that quasi-Grammian solutions can be simplified to elementary solutions by reducing spectral parameters.
Keywords: discrete integrable systems, soliton solutions, kink solutions, standard binary Darboux transformation.
Received: 31.03.2024
Revised: 20.04.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 221, Issue 1, Pages 1650–1674
DOI: https://doi.org/10.1134/S0040577924100052
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Inam, M. ul Hassan, “Quasi-Grammian soliton and kink dynamics of an M-component semidiscrete coupled integrable system”, TMF, 221:1 (2024), 70–96; Theoret. and Math. Phys., 221:1 (2024), 1650–1674
Citation in format AMSBIB
\Bibitem{InaUl 24}
\by A.~Inam, M.~ul Hassan
\paper Quasi-Grammian soliton and kink dynamics of an~$M$-component semidiscrete coupled integrable system
\jour TMF
\yr 2024
\vol 221
\issue 1
\pages 70--96
\mathnet{http://mi.mathnet.ru/tmf10736}
\crossref{https://doi.org/10.4213/tmf10736}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4813483}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...221.1650I}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 221
\issue 1
\pages 1650--1674
\crossref{https://doi.org/10.1134/S0040577924100052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207384955}
Linking options:
  • https://www.mathnet.ru/eng/tmf10736
  • https://doi.org/10.4213/tmf10736
  • https://www.mathnet.ru/eng/tmf/v221/i1/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:105
    References:20
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025