Abstract:
Statistical model of the fully developed turbulence in the two-dimensional space is considered by means of the renormalization group method in the weak anisotropy approximation. It is shown that the corresponding fixed point of the renormalization group equations is not infrared stable, hence the weak anisotropy approximation is not valid for the description of the two-dimensional turbulence.
Citation:
N. V. Antonov, A. V. Runov, “Renormalization group in the theory of the two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy”, TMF, 112:3 (1997), 417–427; Theoret. and Math. Phys., 112:3 (1997), 1131–1139
\Bibitem{AntRun97}
\by N.~V.~Antonov, A.~V.~Runov
\paper Renormalization group in the theory of the two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy
\jour TMF
\yr 1997
\vol 112
\issue 3
\pages 417--427
\mathnet{http://mi.mathnet.ru/tmf1053}
\crossref{https://doi.org/10.4213/tmf1053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1486798}
\zmath{https://zbmath.org/?q=an:0968.76565}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 3
\pages 1131--1139
\crossref{https://doi.org/10.1007/BF02583045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071403900006}
Linking options:
https://www.mathnet.ru/eng/tmf1053
https://doi.org/10.4213/tmf1053
https://www.mathnet.ru/eng/tmf/v112/i3/p417
This publication is cited in the following 10 articles:
Canet L. Delamotte B. Wschebor N., “Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution”, Phys. Rev. E, 93:6 (2016), 063101
Hnatic M. Honkonen J. Lucivjansky T., “Advanced Field-Theoretical Methods in Stochastic Dynamics and Theory of Developed Turbulence”, Acta Phys. Slovaca, 66:2-3 (2016), 69–265
Gladyshev A.V. Jurcisinova E. Jurcisin M. Remecky R. Zalom P., “Anomalous Scaling of a Passive Scalar Field Near Two Dimensions”, Phys. Rev. E, 86:3, Part 2 (2012), 036302
Zhou Y., “Renormalization group theory for fluid and plasma turbulence”, Physics Reports-Review Section of Physics Letters, 488:1 (2010), 1–49
D. Volchenkov, “Renormalization group and instantons in stochastic nonlinear dynamics”, Eur. Phys. J. Spec. Top., 170:1 (2009), 1
Hnatich, M, “Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy”, Physical Review E, 71:6 (2005), 066312
Busa, J, “Influence of anisotropy on the scaling regimes in fully developed turbulence”, Acta Physica Slovaca, 52:6 (2002), 547
Hnatich M., Jonyova E., Jurcisin M., Stehlik M., “Stability of scaling regimes in d >= 2 developed turbulence with weak anisotropy”, Physical Review E, 64:1 (2001), 016312
Antonov, NV, “Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence”, Physical Review E, 60:4 (1999), 4043
Honkonen, J, “Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation”, Physical Review E, 58:4 (1998), 4532