Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 112, Number 3, Pages 355–374
DOI: https://doi.org/10.4213/tmf1048
(Mi tmf1048)
 

This article is cited in 20 scientific papers (total in 20 papers)

A representation of quantum field Hamiltonian in a p-adic Hilbert space

S. A. Albeverioa, A. Yu. Khrennikovb, R. Ciancic

a Ruhr-Universität Bochum, Mathematischer Institut
b Växjö University
c University of Genova, Department of Mathematics
References:
Abstract: Gaussian measures on infinite-dimensional p-adic spaces are introduced and the corresponding L2-spaces of p-adic valued square integrable functions are constructed. Representations of the infinite-dimensional Weyl group are realized in p-adic L2-spaces. There is a formal analogy with the usual Segal representation. But there is also a large topological difference: parameters of the p-adic infinite-dimensional Weyl group are defined only on some balls (these balls are additive subgroups). p-Adic Hilbert space representations of quantum Hamiltonians for systems with an infinite number of degrees of freedom are constructed. Many Hamiltonians with potentials which are too singular to exist as functions over reals are realized as bounded symmetric operators in L2-spaces with respect to a p-adic Gaussian measure.
Received: 05.02.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 112, Issue 3, Pages 1081–1096
DOI: https://doi.org/10.1007/BF02583040
Bibliographic databases:
Language: Russian
Citation: S. A. Albeverio, A. Yu. Khrennikov, R. Cianci, “A representation of quantum field Hamiltonian in a p-adic Hilbert space”, TMF, 112:3 (1997), 355–374; Theoret. and Math. Phys., 112:3 (1997), 1081–1096
Citation in format AMSBIB
\Bibitem{AlbKhrCia97}
\by S.~A.~Albeverio, A.~Yu.~Khrennikov, R.~Cianci
\paper A representation of quantum field Hamiltonian in a $p$-adic Hilbert space
\jour TMF
\yr 1997
\vol 112
\issue 3
\pages 355--374
\mathnet{http://mi.mathnet.ru/tmf1048}
\crossref{https://doi.org/10.4213/tmf1048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1486794}
\zmath{https://zbmath.org/?q=an:0968.46519}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 3
\pages 1081--1096
\crossref{https://doi.org/10.1007/BF02583040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071403900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1048
  • https://doi.org/10.4213/tmf1048
  • https://www.mathnet.ru/eng/tmf/v112/i3/p355
  • This publication is cited in the following 20 articles:
    1. Paolo Aniello, Sonia L'Innocente, Stefano Mancini, Vincenzo Parisi, Ilaria Svampa, Andreas Winter, “Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups”, Lett Math Phys, 114:3 (2024)  crossref
    2. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Quantum mechanics on a p-adic Hilbert space: Foundations and prospects”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)  crossref
    3. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Trace class operators and states in p-adic quantum mechanics”, Journal of Mathematical Physics, 64:5 (2023)  crossref
    4. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “A p-Adic Model of Quantum States and the p-Adic Qubit”, Entropy, 25:1 (2022), 86  crossref
    5. Mukhamedov F., Khakimov O., “Translation-Invariant Generalized P-Adic Gibbs Measures For the Ising Model on Cayley Trees”, Math. Meth. Appl. Sci., 44:16 (2021), 12302–12316  crossref  isi
    6. Farrukh Mukhamedov, Otabek Khakimov, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Advances in Non-Archimedean Analysis and Applications, 2021, 115  crossref
    7. Ahmad Mohd Ali Khameini, Liao L., Saburov M., “Periodic P-Adic Gibbs Measures of Q-State Potts Model on Cayley Trees i: the Chaos Implies the Vastness of the Set of P-Adic Gibbs Measures”, J. Stat. Phys., 171:6 (2018), 1000–1034  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Stepic A.I., Ognjanovic Z., “Logics to Formalise P-Adic Valued Probability and Their Applications”, Int. J. Parallel Emerg. Distrib. Syst., 33:3, SI (2018), 257–275  crossref  isi  scopus  scopus  scopus
    9. Dragovich B., Khrennikov A.Yu., Misic N.Z., “Summation of P-Adic Functional Series in Integer Points”, Filomat, 31:5 (2017), 1339–1347  crossref  mathscinet  isi  scopus
    10. Saburov M., bin Ismail M.J., “On Square Root Function Over Q(P) and Its Application”, 37Th International Conference on Quantum Probability and Related Topics (Qp37), Journal of Physics Conference Series, 819, eds. Accardi L., Mukhamedov F., Hee P., IOP Publishing Ltd, 2017, UNSP 012028  crossref  mathscinet  isi  scopus  scopus  scopus
    11. A. Ilić Stepić, Z. Ognjanović, N. Ikodinović, A. Perović, “p-Adic probability logics”, P-Adic Num Ultrametr Anal Appl, 8:3 (2016), 177  crossref
    12. Stepic A.I., Ognjanovic Z., “Logics For Reasoning About Processes of Thinking With Information Coded By P-Adic Numbers”, Stud. Log., 103:1 (2015), 145–174  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    13. Mukhamedov F., Dogan M., “On P-Adic Lambda-Model on the Cayley Tree II: Phase Transitions”, Rep. Math. Phys., 75:1 (2015), 25–46  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    14. Mansoor Saburov, Mohd Ali Khameini Ahmad, “On Descriptions of All Translation Invariant p-adic Gibbs Measures for the Potts Model on The Cayley Tree of Order Three”, Math Phys Anal Geom, 18:1 (2015)  crossref
    15. Ilic-Stepic A., Ognjanovic Z., Ikodinovic N., “Conditional P-Adic Probability Logic”, Int. J. Approx. Reasoning, 55:9, SI (2014), 1843–1865  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    16. Ilic-Stepic A., Ognjanovic Z., Ikodinovic N., Perovic A., “A P-Adic Probability Logic”, Math. Log. Q., 58:4-5 (2012), 263–280  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    17. Andrei Yu. Khrennikov, Jan Harm Van der Walt, “On topological extensions of Archimedean and non-Archimedean rings”, P-Adic Num Ultrametr Anal Appl, 3:4 (2011), 326  crossref
    18. Kochubei A.N., “Non-Archimedean normal operators”, Journal of Mathematical Physics, 51:2 (2010), 023526  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    19. Sergio Albeverio, Roberto Cianci, Andrei Yu. Khrennikov, “p-Adic valued quantization”, P-Adic Num Ultrametr Anal Appl, 1:2 (2009), 91  crossref
    20. S. A. Albeverio, P. E. Kloeden, A. Yu. Khrennikov, “Human memory as a $p$-adic dynamic system”, Theoret. and Math. Phys., 117:3 (1998), 1414–1422  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:449
    Full-text PDF :257
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025