Abstract:
On the base of Lie algebraic and differential geometry methods, a wide class of multidimensional nonlinear systems is obtained, and the integration scheme for such equations is proposed.
Citation:
A. V. Razumov, M. V. Saveliev, “Multidimensional Toda type systems”, TMF, 112:2 (1997), 254–282; Theoret. and Math. Phys., 112:2 (1997), 999–1022
\Bibitem{RazSav97}
\by A.~V.~Razumov, M.~V.~Saveliev
\paper Multidimensional Toda type systems
\jour TMF
\yr 1997
\vol 112
\issue 2
\pages 254--282
\mathnet{http://mi.mathnet.ru/tmf1042}
\crossref{https://doi.org/10.4213/tmf1042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1483279}
\zmath{https://zbmath.org/?q=an:0978.37505}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 2
\pages 999--1022
\crossref{https://doi.org/10.1007/BF02634159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YE83300005}
Linking options:
https://www.mathnet.ru/eng/tmf1042
https://doi.org/10.4213/tmf1042
https://www.mathnet.ru/eng/tmf/v112/i2/p254
This publication is cited in the following 16 articles:
Palese M. Winterroth E., “Particle-Like, Dyx-Coaxial and Trix-Coaxial Lie Algebra Structures For a Multi-Dimensional Continuous Toda Type System”, Nucl. Phys. B, 960 (2020), 115187
Vekslerchik V.E., “Solitons of the (2+2)-Dimensional Toda Lattice”, J. Phys. A-Math. Theor., 52:4 (2019), 045202
Guest M.A., Lin Ch.-Sh., “Nonlinear PDE Aspects of the Tt Equations of Cecotti and Vafa”, J. Reine Angew. Math., 689 (2014), 1–32
M. S. Nirova, “On conservation laws in affine Toda systems”, Vladikavk. matem. zhurn., 13:1 (2011), 59–70
Alvarez, O, “INTEGRABLE THEORIES AND LOOP SPACES: FUNDAMENTALS, APPLICATIONS AND NEW DEVELOPMENTS”, International Journal of Modern Physics A, 24:10 (2009), 1825
Kh. Nirov, A. V. Razumov, “Z-graded loop Lie algebras, loop groups, and Toda equations”, Theoret. and Math. Phys., 154:3 (2008), 385–404
Nirov Kh.S., Razumov A.V., “The rational dressing for abelian twisted loop Toda systems”, Journal of High Energy Physics, 2008, no. 12, 048
Nirov Kh.S., Razumov A.V., “Toda equations associated with loop groups of complex classical Lie groups”, Nuclear Physics B, 783:3 (2007), 241–275
Nirov, KS, “On Z-gradations of twisted loop Lie algebras of complex simple Lie algebras”, Communications in Mathematical Physics, 267:3 (2006), 587
Zuevsky, A, “Continual Lie algebras and noncommutative counterparts of exactly solvable models”, Journal of Physics A-Mathematical and General, 37:2 (2004), 537
Nirov, KS, “W-algebras for non-abelian Toda systems”, Journal of Geometry and Physics, 48:4 (2003), 505
Aratyn, H, “Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion”, Journal of Geometry and Physics, 46:1 (2003), 21
Bueno, AG, “Confinement and soliton solutions in the SL(3) Toda model coupled to matter fields”, Nuclear Physics B, 626:3 (2002), 463
J. Gervais, “Lax equations in 10-dimensional supersymmetric classical Yang–Mills theories”, Theoret. and Math. Phys., 123:2 (2000), 569–575
Razumov A.V., Saveliev M.V., “Lie groups, differential geometry, and nonlinear integrable systems”, Nonassociative Algebra and its Applications, Lecture Notes in Pure and Applied Mathematics, 211, 2000, 321–336
Ferreira, LA, “Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems”, Communications in Mathematical Physics, 203:3 (1999), 649