Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 1, Pages 54–79
DOI: https://doi.org/10.4213/tmf10155
(Mi tmf10155)
 

This article is cited in 1 scientific paper (total in 1 paper)

Relaxing solitons of a biaxial ferromagnet

V. V. Kiselevab, S. Batalovab

a Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
b Institute of Physics and Technology of the Ural Federal University, Ekaterinburg, Russia
Full-text PDF (653 kB) Citations (1)
References:
Abstract: We use the Riemann problem on a torus to obtain and analyze new analytic solutions of the Landau–Lifshitz model that describe the nonlinear dynamics of solitons of a biaxial ferromagnet in the field of dispersive spin waves. We show that nonlinear interference of solitons and waves leads to nonadiabatic relaxation oscillations of solitons. Formulas are obtained that determine the changes in the frequency and velocity of solitons in the radiation field. Collisions of relaxing solitons on a spin-wave background are analyzed.
Keywords: Landau–Lifshitz equation, biaxial ferromagnet, Riemann problem, solitons, dispersing waves.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation AAAA-A18-118020190095-4
This paper is written in the framework of the State Assignment “Kvant” from the Ministry for Education and Science of the Russian Federation, No. AAAA-A18-118020190095-4.
Received: 26.07.2021
Revised: 26.07.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 1, Pages 46–67
DOI: https://doi.org/10.1134/S0040577922010044
Bibliographic databases:
Document Type: Article
PACS: 02.30.Jr
MSC: 37K40
Language: Russian
Citation: V. V. Kiselev, S. Batalov, “Relaxing solitons of a biaxial ferromagnet”, TMF, 210:1 (2022), 54–79; Theoret. and Math. Phys., 210:1 (2022), 46–67
Citation in format AMSBIB
\Bibitem{KisBat22}
\by V.~V.~Kiselev, S.~Batalov
\paper Relaxing solitons of a biaxial ferromagnet
\jour TMF
\yr 2022
\vol 210
\issue 1
\pages 54--79
\mathnet{http://mi.mathnet.ru/tmf10155}
\crossref{https://doi.org/10.4213/tmf10155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360134}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210...46K}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 1
\pages 46--67
\crossref{https://doi.org/10.1134/S0040577922010044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000749189400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123954129}
Linking options:
  • https://www.mathnet.ru/eng/tmf10155
  • https://doi.org/10.4213/tmf10155
  • https://www.mathnet.ru/eng/tmf/v210/i1/p54
  • This publication is cited in the following 1 articles:
    1. V. V. Kiselev, S. V. Batalov, “Nonlinear interference of solitons and waves in the domain magnetic structure”, Theoret. and Math. Phys., 214:3 (2023), 369–405  mathnet  crossref  crossref  mathscinet  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :46
    References:84
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025