Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 2, Pages 165–179
DOI: https://doi.org/10.4213/tmf10103
(Mi tmf10103)
 

This article is cited in 10 scientific papers (total in 10 papers)

Sigma models as Gross–Neveu models

D. V. Bykov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We review the correspondence between integrable sigma models with complex homogeneous target spaces and the chiral bosonic (and possibly mixed bosonic/fermionic) Gross–Neveu models. Mathematically, these are models with quiver variety phase spaces, which reduce to more conventional sigma models in special cases. We discuss the geometry of the models as well as their trigonometric and elliptic deformations, the Ricci flow, and the inclusion of fermions.
Keywords: sigma model, integrable model, Gross–Neveu model, quiver variety, Ricci flow.
Funding agency Grant number
Russian Science Foundation 20-72-10144
This work was supported by the Russian Science Foundation grant RSCF-20-72-10144.
Received: 31.03.2021
Revised: 31.03.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 2, Pages 993–1003
DOI: https://doi.org/10.1134/S0040577921080018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Bykov, “Sigma models as Gross–Neveu models”, TMF, 208:2 (2021), 165–179; Theoret. and Math. Phys., 208:2 (2021), 993–1003
Citation in format AMSBIB
\Bibitem{Byk21}
\by D.~V.~Bykov
\paper Sigma models as Gross--Neveu models
\jour TMF
\yr 2021
\vol 208
\issue 2
\pages 165--179
\mathnet{http://mi.mathnet.ru/tmf10103}
\crossref{https://doi.org/10.4213/tmf10103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4295029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208..993B}
\elib{https://elibrary.ru/item.asp?id=47004460}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 2
\pages 993--1003
\crossref{https://doi.org/10.1134/S0040577921080018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000686798400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113228061}
Linking options:
  • https://www.mathnet.ru/eng/tmf10103
  • https://doi.org/10.4213/tmf10103
  • https://www.mathnet.ru/eng/tmf/v208/i2/p165
  • This publication is cited in the following 10 articles:
    1. Sylvain Lacroix, Anders Wallberg, “An elliptic integrable deformation of the Principal Chiral Model”, J. High Energ. Phys., 2024:5 (2024)  crossref
    2. Oleksandr Gamayun, Andrei Losev, Mikhail Shifman, “First-order formalism for β functions in bosonic sigma models from supersymmetry breaking”, Phys. Rev. D, 110:2 (2024)  crossref
    3. D. V. Bykov, “Sigma models as Gross–Neveu models. II”, Theoret. and Math. Phys., 217:3 (2023), 1842–1854  mathnet  crossref  crossref  mathscinet  adsnasa
    4. O. Gamayun, A. Losev, M. Shifman, “Peculiarities of beta functions in sigma models”, J. High Energ. Phys., 2023:10 (2023), 97  crossref  mathscinet
    5. D. V. Bykov, “β-function of the level-zero Gross–Neveu model”, SciPost Phys., 15:4 (2023), 127–27  mathnet  crossref  mathscinet  isi
    6. D. V. Bykov, “Quantum flag manifold σ-models and Hermitian Ricci flow”, Comm. Math. Phys., 401 (2023), 1–32  mathnet  crossref  mathscinet
    7. D. Bykov, “Integrable sigma models on Riemann surfaces”, Phys. Rev. D, 107:8 (2023), 085015  crossref
    8. D. V. Bykov, A. V. Smilga, “Monopole harmonics on CPn1”, SciPost Phys., 15 (2023), 195–33  mathnet  crossref  mathscinet  isi
    9. I. Affleck, D. Bykov, K. Wamer, “Flag manifold SIGMA models: spin chains and integrable theories”, Phys. Rep.-Rev. Sec. Phys. Lett., 953 (2022), 1–93  crossref  mathscinet  isi
    10. Bykov D., Luest D., “Deformed SIGMA-Models, Ricci Flow and Toda Field Theories”, Lett. Math. Phys., 111:6 (2021), 150  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :110
    References:39
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025