Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 1, Pages 145–162
DOI: https://doi.org/10.4213/tmf10025
(Mi tmf10025)
 

This article is cited in 3 scientific papers (total in 3 papers)

Behaviour of Andreev states for topological phase transition

Yu. P. Chuburina, T. S. Tinyukovab

a Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
b Udmurt State University, Izhevsk, Russia
Full-text PDF (493 kB) Citations (3)
References:
Abstract: We consider three one-dimensional superconducting structures: 1) the one with $p$-wave superconductivity; 2) the main experimental model of a nanowire with $s$-wave superconductivity generated by the bulk superconductor due to the proximity effect in an external magnetic field and Rashba spin–orbit interaction; 3) the boundary of a two-dimensional topological insulator with an $s$-wave superconducting order in an external magnetic field. We obtain precise analytic results for the “superconductor–magnetic impurity–superconductor” model. Using the Bogoliubov–de Gennes Hamiltonian, we study the behavior of stable states arising in these structures, with energies near the edges of the energy gap of “electron” (“hole”) type for the first model and “electron plus hole” type for the other two models in the case where the system passes from the topological phase to the trivial one. For the topological phase transition, resonance (decaying) states turn out to play a major role; the spin flip and the change of sign of the charge occur due to the transition of bound states to resonance ones and vice versa with their energy changing to the opposite ones as the gap closes. The results are consistent with the absence of a zero-bias conductance peak in the trivial topological phase observed in a recent experiment.
Keywords: Bogoliubov–de Gennes Hamiltonian, superconducting gap, Andreev bound state, Majorana bound state, resonance state.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations AAAA-A16-116021010082-8
Ministry of Science and Higher Education of the Russian Federation 075-00232-20-01
Chuburin's work was supported by program AAAA-A16-116021010082-8. Tinyukova's work was funded by the Ministry of Science and Higher Education of Russian Federation in the framework of state assignment No. 075-00928-21-01, project FEWS-2020-0010[1].
Received: 09.12.2020
Revised: 10.02.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 1, Pages 977–992
DOI: https://doi.org/10.1134/S0040577921070102
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. P. Chuburin, T. S. Tinyukova, “Behaviour of Andreev states for topological phase transition”, TMF, 208:1 (2021), 145–162; Theoret. and Math. Phys., 208:1 (2021), 977–992
Citation in format AMSBIB
\Bibitem{ChuTin21}
\by Yu.~P.~Chuburin, T.~S.~Tinyukova
\paper Behaviour of Andreev states for topological phase transition
\jour TMF
\yr 2021
\vol 208
\issue 1
\pages 145--162
\mathnet{http://mi.mathnet.ru/tmf10025}
\crossref{https://doi.org/10.4213/tmf10025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208..977C}
\elib{https://elibrary.ru/item.asp?id=46934677}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 1
\pages 977--992
\crossref{https://doi.org/10.1134/S0040577921070102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000673296600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111828932}
Linking options:
  • https://www.mathnet.ru/eng/tmf10025
  • https://doi.org/10.4213/tmf10025
  • https://www.mathnet.ru/eng/tmf/v208/i1/p145
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :56
    References:64
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025