Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 3, Pages 481–494
DOI: https://doi.org/10.4213/tmf10011
(Mi tmf10011)
 

This article is cited in 3 scientific papers (total in 3 papers)

Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group

Sh. M. Nagiyev, R. M. Mir-Kassimov

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Full-text PDF (453 kB) Citations (3)
References:
Abstract: An exactly solvable relativistic model of a linear oscillator is considered in detail in the presence of a constant external force in both the momentum representation and the relativistic configuration representation. It is found that in contrast to the nonrelativistic case, depending on the magnitude of the force, both discrete and continuous energy spectra are possible. It is shown that in the case of a discrete spectrum, the wave functions in the momentum representation are expressed in terms of the Laguerre polynomials, and in the relativistic configuration representation, in terms of the Meixner–Pollaczek polynomials. Integral and differential–difference formulas are found connecting the Laguerre and Meixner–Pollaczek polynomials. A dynamical symmetry group is constructed.
Keywords: relativistic linear oscillator model, uniform field, finite-difference equation, dynamical symmetry group, relation between orthogonal polynomials.
Received: 14.11.2020
Revised: 03.05.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 3, Pages 1265–1276
DOI: https://doi.org/10.1134/S0040577921090087
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. M. Nagiyev, R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group”, TMF, 208:3 (2021), 481–494; Theoret. and Math. Phys., 208:3 (2021), 1265–1276
Citation in format AMSBIB
\Bibitem{NagMir21}
\by Sh.~M.~Nagiyev, R.~M.~Mir-Kassimov
\paper Relativistic linear oscillator under the action of a constant
external force. Wave functions and dynamical symmetry group
\jour TMF
\yr 2021
\vol 208
\issue 3
\pages 481--494
\mathnet{http://mi.mathnet.ru/tmf10011}
\crossref{https://doi.org/10.4213/tmf10011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208.1265N}
\elib{https://elibrary.ru/item.asp?id=47062995}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 3
\pages 1265--1276
\crossref{https://doi.org/10.1134/S0040577921090087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698718800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115605560}
Linking options:
  • https://www.mathnet.ru/eng/tmf10011
  • https://doi.org/10.4213/tmf10011
  • https://www.mathnet.ru/eng/tmf/v208/i3/p481
  • This publication is cited in the following 3 articles:
    1. Sh. M. Nagiyev, R. M. Mir-Kasimov, “Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function”, Theoret. and Math. Phys., 214:1 (2023), 72–88  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Yu. A. Grishechkin, V. N. Kapshai, “Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation”, Theoret. and Math. Phys., 211:3 (2022), 826–837  mathnet  crossref  crossref  mathscinet  adsnasa
    3. Sh. M. Nagiyev, C. Aydin, A. I. Ahmadov, Sh. A. Amirova, “Exactly solvable model of the linear harmonic oscillator with a position-dependent mass under external homogeneous gravitational field”, Eur. Phys. J. Plus, 137:5 (2022)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :220
    References:82
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025