Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 247, Pages 41–58 (Mi tm9)  

This article is cited in 17 scientific papers (total in 17 papers)

Combinatorics of Simplicial Cell Complexes and Torus Actions

V. M. Buchstabera, T. E. Panovb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Simplicial cell complexes are special cellular decompositions also known as virtual or ideal triangulations; in combinatorics, appropriate analogues are given by simplicial partially ordered sets. In this paper, combinatorial and topological properties of simplicial cell complexes are studied. Namely, the properties of f-vectors and face rings of simplicial cell complexes are analyzed and described, and a number of well-known results on the combinatorics of simplicial partitions are generalized. In particular, we give an explicit expression for the operator on f- and h-vectors that is defined by a barycentric subdivision, derive analogues of the Dehn–Sommerville relations for simplicial cellular decompositions of spheres and manifolds, and obtain a generalization of the well-known Stanley criterion for the existence of regular sequences in the face rings of simplicial cell complexes. As an application, a class of manifolds with a torus action is constructed, and generalizations of some of our previous results on the moment–angle complexes corresponding to triangulations are proved.
Received in April 2004
Bibliographic databases:
Document Type: Article
UDC: 515.16+514
Language: Russian
Citation: V. M. Buchstaber, T. E. Panov, “Combinatorics of Simplicial Cell Complexes and Torus Actions”, Geometric topology and set theory, Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh, Trudy Mat. Inst. Steklova, 247, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 41–58; Proc. Steklov Inst. Math., 247 (2004), 33–49
Citation in format AMSBIB
\Bibitem{BucPan04}
\by V.~M.~Buchstaber, T.~E.~Panov
\paper Combinatorics of Simplicial Cell Complexes and Torus Actions
\inbook Geometric topology and set theory
\bookinfo Collected papers. Dedicated to the 100th birthday of professor Lyudmila Vsevolodovna Keldysh
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 247
\pages 41--58
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm9}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2168162}
\zmath{https://zbmath.org/?q=an:1098.52003}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 247
\pages 33--49
Linking options:
  • https://www.mathnet.ru/eng/tm9
  • https://www.mathnet.ru/eng/tm/v247/p41
  • This publication is cited in the following 17 articles:
    1. Ayzenberg A., “Space of Isospectral Periodic Tridiagonal Matrices”, Algebr. Geom. Topol., 20:6 (2020), 2957–2994  crossref  mathscinet  isi  scopus
    2. A. A. Ayzenberg, “Locally standard torus actions and sheaves over Buchsbaum posets”, Sb. Math., 208:9 (2017), 1261–1281  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Ayzenberg A., Masuda M., Park S., Zeng H., “Cohomology of Toric Origami Manifolds With Acyclic Proper Faces”, J. Symplectic Geom., 15:3 (2017), 645–685  crossref  mathscinet  zmath  isi  scopus
    4. Ayzenberg A., “Topological Model For H" Vectors of Simplicial Manifolds”, Bol. Soc. Mat. Mex., 23:1, SI (2017), 413–421  crossref  mathscinet  zmath  isi
    5. A. A. Gaifullin, “Small covers of graph-associahedra and realization of cycles”, Sb. Math., 207:11 (2016), 1537–1561  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Ayzenberg A., “Locally standard torus actions and $h'$-numbers of simplicial posets”, J. Math. Soc. Jpn., 68:4 (2016), 1725–1745  crossref  mathscinet  zmath  isi  scopus
    7. Ayzenberg A., “Homology cycles in manifolds with locally standard torus actions”, Homol. Homotopy Appl., 18:1 (2016), 1–23  crossref  mathscinet  zmath  isi  elib  scopus
    8. A. A. Aizenberg, M. Masuda, Seonjeong Park, Haozhi Zeng, “Toric origami structures on quasitoric manifolds”, Proc. Steklov Inst. Math., 288 (2015), 10–28  mathnet  crossref  crossref  isi  elib
    9. Wang X. Zheng Q., “the Homology of Simplicial Complements and the Cohomology of Polyhedral Products”, Forum Math., 27:4 (2015), 2267–2299  crossref  mathscinet  zmath  isi  elib  scopus
    10. Cao X., Lu Zh., “Mobius transform, moment-angle complexes and Halperin-Carlsson conjecture”, J Algebraic Combin, 35:1 (2012), 121–140  crossref  mathscinet  zmath  isi  scopus
    11. Lue Zh., Panov T., “Moment-angle complexes from simplicial posets”, Cent Eur J Math, 9:4 (2011), 715–730  crossref  mathscinet  zmath  isi  scopus
    12. Yu. M. Ustinovskii, “Doubling operation for polytopes and torus actions”, Russian Math. Surveys, 64:5 (2009), 952–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. N. Yu. Erokhovets, “Buchstaber invariant of simple polytopes”, Russian Math. Surveys, 63:5 (2008), 962–964  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. V. M. Buchstaber, “Ring of Simple Polytopes and Differential Equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    15. Buchstaber V.M., Ray N., “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric topology, Comp. Math. Ser., 460, 2008, 1–27  mathscinet  zmath  isi
    16. Maeda H., Masuda M., Panov T., “Torus graphs and simplicial posets”, Advances in Mathematics, 212:2 (2007), 458–483  crossref  mathscinet  zmath  isi  scopus
    17. V. M. Buchstaber, A. A. Gaifullin, “Representations of $m$-valued groups on triangulations of manifolds”, Russian Math. Surveys, 61:3 (2006), 560–562  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:728
    Full-text PDF :223
    References:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025