Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 111–126 (Mi tm88)  

This article is cited in 3 scientific papers (total in 3 papers)

On a Family of Lie Algebras Related to Homogeneous Surfaces

A. V. Loboda

Voronezh State Academy of Building and Architecture
Full-text PDF (214 kB) Citations (3)
References:
Abstract: Real affine homogeneous hypersurfaces of general position in three-dimensional complex space C3 are studied. The general position is defined in terms of the Taylor coefficients of the surface equation and implies, first of all, that the isotropy groups of the homogeneous manifolds under consideration are discrete. It is this case that has remained unstudied after the author's works on the holomorphic (in particular, affine) homogeneity of real hypersurfaces in three-dimensional complex manifolds. The actions of affine subgroups GAff(3,C) in the complex tangent space TCpM of a homogeneous surface are considered. The situation with homogeneity can be described in terms of the dimensions of the corresponding Lie algebras. The main result of the paper eliminates “almost trivial” actions of the groups G on the spaces TCpM for affine homogeneous strictly pseudoconvex surfaces of general position in C3 that are different from quadrics.
Received in September 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 253, Pages 100–114
DOI: https://doi.org/10.1134/S0081543806020106
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. V. Loboda, “On a Family of Lie Algebras Related to Homogeneous Surfaces”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 111–126; Proc. Steklov Inst. Math., 253 (2006), 100–114
Citation in format AMSBIB
\Bibitem{Lob06}
\by A.~V.~Loboda
\paper On a~Family of Lie Algebras Related to Homogeneous Surfaces
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 111--126
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm88}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338692}
\zmath{https://zbmath.org/?q=an:1351.32061}
\elib{https://elibrary.ru/item.asp?id=13506631}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 100--114
\crossref{https://doi.org/10.1134/S0081543806020106}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748289440}
Linking options:
  • https://www.mathnet.ru/eng/tm88
  • https://www.mathnet.ru/eng/tm/v253/p111
  • This publication is cited in the following 3 articles:
    1. A. V. Loboda, T. T. D. Nguyẽn, “On the affine homogeneity of tubular type surfaces in $\mathbb C^3$”, Proc. Steklov Inst. Math., 279 (2012), 93–109  mathnet  crossref  mathscinet  isi  elib  elib
    2. M. S. Danilov, A. V. Loboda, “Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$”, Math. Notes, 88:6 (2010), 827–843  mathnet  crossref  crossref  mathscinet  isi
    3. A. M. Demin, A. V. Loboda, “An Example of a Two-Parameter Family of Affine Homogeneous Real Hypersurfaces in $\mathbb C^3$”, Math. Notes, 84:5 (2008), 737–740  mathnet  crossref  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :146
    References:102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025