Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 265, Pages 273–287 (Mi tm841)  

This article is cited in 6 scientific papers (total in 6 papers)

On Solutions to the Wave Equation on a Non-globally Hyperbolic Manifold

I. V. Volovicha, O. V. Groshevb, N. A. Gusevc, E. A. Kuryanovich

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
Full-text PDF (229 kB) Citations (6)
References:
Abstract: We consider the Cauchy problem for the wave equation on a non-globally hyperbolic manifold of special form (the Minkowski plane with a handle) containing closed time-like curves. We prove that the classical solution of the Cauchy problem exists and is unique for initial data satisfying a specific set of additional requirements.
Received in December 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 265, Pages 262–275
DOI: https://doi.org/10.1134/S0081543809020242
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: I. V. Volovich, O. V. Groshev, N. A. Gusev, E. A. Kuryanovich, “On Solutions to the Wave Equation on a Non-globally Hyperbolic Manifold”, Selected topics of mathematical physics and p-adic analysis, Collected papers, Trudy Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 273–287; Proc. Steklov Inst. Math., 265 (2009), 262–275
Citation in format AMSBIB
\Bibitem{VolGroGus09}
\by I.~V.~Volovich, O.~V.~Groshev, N.~A.~Gusev, E.~A.~Kuryanovich
\paper On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold
\inbook Selected topics of mathematical physics and $p$-adic analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 265
\pages 273--287
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599561}
\zmath{https://zbmath.org/?q=an:1193.58015}
\elib{https://elibrary.ru/item.asp?id=12601468}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 265
\pages 262--275
\crossref{https://doi.org/10.1134/S0081543809020242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268514300024}
\elib{https://elibrary.ru/item.asp?id=15296943}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350217432}
Linking options:
  • https://www.mathnet.ru/eng/tm841
  • https://www.mathnet.ru/eng/tm/v265/p273
  • This publication is cited in the following 6 articles:
    1. Bishop L.G., Costa F., Ralph T.C., “Time-Traveling Billiard-Ball Clocks: a Quantum Model”, Phys. Rev. A, 103:4 (2021), 042223  crossref  mathscinet  isi
    2. I. N. Rodionova, V. M. Dolgopolov, M. V. Dolgopolov, “Delta-problems for the generalized Euler–Darboux equation”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:3 (2017), 417–422  mathnet  crossref  zmath  elib
    3. Arefeva I., Bagrov A., Saterskog P., Schalm K., “Holographic dual of a time machine”, Phys. Rev. D, 94:4 (2016), 044059  crossref  mathscinet  isi  elib  scopus
    4. I. V. Volovich, V. Zh. Sakbaev, “Universal boundary value problem for equations of mathematical physics”, Proc. Steklov Inst. Math., 285 (2014), 56–80  mathnet  crossref  crossref  isi  elib  elib
    5. O. V. Groshev, “Zadacha Koshi dlya volnovogo uravneniya na neglobalno giperbolicheskikh mnogoobraziyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 42–46  mathnet  crossref  elib
    6. O. V. Groshev, “Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds”, Theoret. and Math. Phys., 164:3 (2010), 1202–1207  mathnet  crossref  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:738
    Full-text PDF :153
    References:171
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025