Abstract:
We consider the Cauchy problem for the wave equation on a non-globally hyperbolic manifold of special form (the Minkowski plane with a handle) containing closed time-like curves. We prove that the classical solution of the Cauchy problem exists and is unique for initial data satisfying a specific set of additional requirements.
Citation:
I. V. Volovich, O. V. Groshev, N. A. Gusev, E. A. Kuryanovich, “On Solutions to the Wave Equation on a Non-globally Hyperbolic Manifold”, Selected topics of mathematical physics and p-adic analysis, Collected papers, Trudy Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 273–287; Proc. Steklov Inst. Math., 265 (2009), 262–275
\Bibitem{VolGroGus09}
\by I.~V.~Volovich, O.~V.~Groshev, N.~A.~Gusev, E.~A.~Kuryanovich
\paper On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold
\inbook Selected topics of mathematical physics and $p$-adic analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 265
\pages 273--287
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599561}
\zmath{https://zbmath.org/?q=an:1193.58015}
\elib{https://elibrary.ru/item.asp?id=12601468}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 265
\pages 262--275
\crossref{https://doi.org/10.1134/S0081543809020242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268514300024}
\elib{https://elibrary.ru/item.asp?id=15296943}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350217432}
Linking options:
https://www.mathnet.ru/eng/tm841
https://www.mathnet.ru/eng/tm/v265/p273
This publication is cited in the following 6 articles:
Bishop L.G., Costa F., Ralph T.C., “Time-Traveling Billiard-Ball Clocks: a Quantum Model”, Phys. Rev. A, 103:4 (2021), 042223
I. N. Rodionova, V. M. Dolgopolov, M. V. Dolgopolov, “Delta-problems for the generalized Euler–Darboux equation”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:3 (2017), 417–422
Arefeva I., Bagrov A., Saterskog P., Schalm K., “Holographic dual of a time machine”, Phys. Rev. D, 94:4 (2016), 044059
I. V. Volovich, V. Zh. Sakbaev, “Universal boundary value problem for equations of mathematical physics”, Proc. Steklov Inst. Math., 285 (2014), 56–80
O. V. Groshev, “Zadacha Koshi dlya volnovogo uravneniya na neglobalno giperbolicheskikh mnogoobraziyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 42–46
O. V. Groshev, “Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds”, Theoret. and Math. Phys., 164:3 (2010), 1202–1207