Abstract:
We prove the existence of Kähler–Einstein metrics on a nonsingular section of the Grassmannian Gr(2,5)⊂P9 by a linear subspace of codimension 3 and on the Fermat hypersurface of degree 6 in P(1,1,1,2,3). We also show that a global log canonical threshold of the Mukai–Umemura variety is equal to 1/2.
Citation:
I. A. Cheltsov, K. A. Shramov, “Extremal Metrics on del Pezzo Threefolds”, Multidimensional algebraic geometry, Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 264, MAIK Nauka/Interperiodica, Moscow, 2009, 37–51; Proc. Steklov Inst. Math., 264 (2009), 30–44
\Bibitem{CheShr09}
\by I.~A.~Cheltsov, K.~A.~Shramov
\paper Extremal Metrics on del Pezzo Threefolds
\inbook Multidimensional algebraic geometry
\bookinfo Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 264
\pages 37--51
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2590832}
\elib{https://elibrary.ru/item.asp?id=11807014}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 264
\pages 30--44
\crossref{https://doi.org/10.1134/S0081543809010040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265834800003}
\elib{https://elibrary.ru/item.asp?id=14085601}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65749103791}
Linking options:
https://www.mathnet.ru/eng/tm805
https://www.mathnet.ru/eng/tm/v264/p37
This publication is cited in the following 12 articles:
Charles P. Boyer, Hongnian Huang, Eveline Legendre, Christina W. Tønnesen-Friedman, “Existence and non-existence of constant scalar curvature and extremal Sasaki metrics”, Math. Z., 304:4 (2023)
Ivan Cheltsov, Constantin Shramov, “Kähler–Einstein Fano threefolds of degree 22”, J. Algebraic Geom., 32 (2023), 385–428
Cheltsov I., Park J., Prokhorov Yu., Zaidenberg M., “Cylinders in Fano Varieties”, EMS Surv. Math. Sci., 8:1-2 (2021), 39–105
Xu Ch., “K-Stability of Fano Varieties: An Algebro-Geometric Approach”, EMS Surv. Math. Sci., 8:1-2 (2021), 265–354
Golota A., “Delta-Invariants For Fano Varieties With Large Automorphism Groups”, Int. J. Math., 31:10 (2020), 2050077
Cheltsov I.A., Rubinstein Ya.A., Zhang K., “Basis Log Canonical Thresholds, Local Intersection Estimates, and Asymptotically Log Del Pezzo Surfaces”, Sel. Math.-New Ser., 25:2 (2019), UNSP 34
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Fano threefolds with infinite automorphism groups”, Izv. Math., 83:4 (2019), 860–907
Chung K., Hong J., Lee S., “Geometry of Moduli Spaces of Rational Curves in Linear Sections of Grassmannian Gr(2,5)”, J. Pure Appl. Algebr., 222:4 (2018), 868–888
Sławomir Dinew, Grzegorz Kapustka, Michał Kapustka, “Remarks on Mukai threefolds admitting C∗ action”, Mosc. Math. J., 17:1 (2017), 15–33
Fujita K., “Examples of K-Unstable Fano Manifolds With the Picard Number 1”, Proc. Edinb. Math. Soc., 60:4 (2017), 881–891
Cremona Groups and the Icosahedron, 2015, 438
Odaka Yu., Sano Yu., “Alpha invariant and K-stability of Q-Fano varieties”, Adv Math, 229:5 (2012), 2818–2834