Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 132–152 (Mi tm716)  

This article is cited in 15 scientific papers (total in 15 papers)

How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces

V. A. Vassiliev
References:
Abstract: A general method of computing cohomology groups of the space of nonsingular algebraic hypersurfaces of degree $d$ in $\mathbf{CP}^n$ is described. Using this method, rational cohomology groups of such spaces with $n=2$, $d\le 4$ and $n=3=d$ and also of the space of nondegenerate quadratic vector fields in $\mathbf C^3$ are calculated.
Received in December 1998
Bibliographic databases:
Document Type: Article
UDC: 515.14+512.7
Language: Russian
Citation: V. A. Vassiliev, “How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 132–152; Proc. Steklov Inst. Math., 225 (1999), 121–140
Citation in format AMSBIB
\Bibitem{Vas99}
\by V.~A.~Vassiliev
\paper How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces
\inbook Solitons, geometry, and topology: on the crossroads
\bookinfo Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 225
\pages 132--152
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725936}
\zmath{https://zbmath.org/?q=an:0981.55008}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 225
\pages 121--140
Linking options:
  • https://www.mathnet.ru/eng/tm716
  • https://www.mathnet.ru/eng/tm/v225/p132
  • This publication is cited in the following 15 articles:
    1. Das R., “Cohomology of the Universal Smooth Cubic Surface”, BJS Open, 6:1 (2022), 795–815  crossref  isi
    2. Das R., “The Space of Cubic Surfaces Equipped With a Line”, Math. Z., 298:1-2 (2021), 653–670  crossref  isi
    3. Zheng A., “Rational Cohomology of the Moduli Space of Trigonal Curves of Genus 5”, Manuscr. Math., 2021  crossref  isi
    4. Gomez-Gonzales C., “Spaces of Non-Degenerate Maps Between Complex Projective Spaces”, Res. Math. Sci., 7:3 (2020), 26  crossref  isi
    5. V. A. Vassiliev, “Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$”, Izv. Math., 80:4 (2016), 791–810  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. V. A. Vassiliev, “Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in $\mathbb R^3$”, Proc. Steklov Inst. Math., 290:1 (2015), 197–209  mathnet  crossref  crossref  isi  elib  elib
    7. Tommasi O., “Rational cohomology of M–3,M–2”, Compositio Mathematica, 143:4 (2007), 986–1002  crossref  mathscinet  zmath  isi  scopus
    8. Bergstrom J., Tommasi O., “The rational cohomology of (M)over–bar(4)”, Mathematische Annalen, 338:1 (2007), 207–239  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Tommasi O., “Rational cohomology of the moduli space of genus 4 curves”, Compositio Mathematica, 141:2 (2005), 359–384  crossref  mathscinet  zmath  isi  scopus  scopus
    10. de Bobadilla J.F., “Moduli spaces of polynomials in two variables”, Memoirs of the American Mathematical Society, 173:817 (2005), VII  mathscinet  isi
    11. C. A. M. Peters, J. H. M. Steenbrink, “Degeneration of the Leray spectral sequence for certain geometric quotients”, Mosc. Math. J., 3:3 (2003), 1085–1095  mathnet  crossref  mathscinet  zmath
    12. V. A. Vassiliev, “Spaces of Hermitian operators with simple spectra and their finite-order cohomology”, Mosc. Math. J., 3:3 (2003), 1145–1165  mathnet  crossref  mathscinet  zmath
    13. Gorinov A.G., “Conical resolutions of discriminant varieties and real cohomology of the space of nonsingular complex plane projective quintics”, Doklady Mathematics, 67:2 (2003), 259–262  mathscinet  zmath  isi
    14. Vassiliev V.A., “Homology of spaces of knots in any dimensions”, Philosophical Transactions of the Royal Society of London Series A–Mathematical Physical and Engineering Sciences, 359:1784 (2001), 1343–1364  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Vassiliev V., “Resolutions of discriminants and topology of their complements”, New Developments in Singularity Theory, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 21, 2001, 87–115  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :331
    References:66
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025