Abstract:
E. V. Voronovskaya and S. N. Bernstein established an asymptotic representation for the deviation of functions from Bernstein polynomials under the condition that the function has an even-order derivative. In the present paper, a similar problem is solved in the case when the function has an odd-order derivative. In addition, analogous representations are obtained for the deviations of functions from Kantorovich polynomials.
Citation:
S. A. Telyakovskii, “On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 289–296; Proc. Steklov Inst. Math., 260 (2008), 279–286
\Bibitem{Tel08}
\by S.~A.~Telyakovskii
\paper On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 289--296
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm600}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489518}
\zmath{https://zbmath.org/?q=an:1233.41002}
\elib{https://elibrary.ru/item.asp?id=9934832}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 279--286
\crossref{https://doi.org/10.1134/S0081543808010197}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800019}
\elib{https://elibrary.ru/item.asp?id=13566446}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749083495}
Linking options:
https://www.mathnet.ru/eng/tm600
https://www.mathnet.ru/eng/tm/v260/p289
This publication is cited in the following 7 articles:
I. V. Okorochkov, I. V. Tikhonov, V. B. Sherstyukov, “On a Connection of Bernstein and Kantorovich Polynomials for a Symmetric Modulus Function”, Sib Math J, 64:3 (2023), 747
I. V. Okorochkov, I. V. Tikhonov, V. B. Sherstyukov, “O svyazi polinomov Bernshteina i Kantorovicha dlya simmetrichnogo modulya”, Vladikavk. matem. zhurn., 24:1 (2022), 87–99
I. V. Tikhonov, V. B. Sherstyukov, “Priblizhenie modulya polinomami Bernshteina”, Vestnik ChelGU, 2012, no. 15, 6–40
V. O. Tonkov, “Approximation by Bernstein polynomials at the discontinuity points of derivatives”, Proc. Steklov Inst. Math., 269 (2010), 259–264
S. A. Telyakovskii, “Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives”, Math. Notes, 85:4 (2009), 590–596
S. A. Telyakovskii, “On the rate of approximation of functions by the Bernstein polynomials”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S177–S184