Abstract:
We consider the question of validity of the extension of a nonlinear control system by introducing the so-called sliding modes (i.e., by convexifying the set of admissible velocities) in the presence of constraints imposed on the endpoints of trajectories. We prove that a trajectory of the extended system can be approximated by trajectories of the original system if the equality constraints of the extended system are nondegenerate in the first order. The proof is based on a nonlocal estimate for the distance to the zero set of the nonlinear operator corresponding to the extended system, and involves a specific iteration process of corrections.
Citation:
A. V. Dmitruk, “Approximation Theorem for a Nonlinear Control System with Sliding Modes”, Dynamical systems and optimization, Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 256, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 102–114; Proc. Steklov Inst. Math., 256 (2007), 92–104
\Bibitem{Dmi07}
\by A.~V.~Dmitruk
\paper Approximation Theorem for a Nonlinear Control System with Sliding Modes
\inbook Dynamical systems and optimization
\bookinfo Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 256
\pages 102--114
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm458}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336896}
\zmath{https://zbmath.org/?q=an:1152.93012}
\elib{https://elibrary.ru/item.asp?id=9482611}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 256
\pages 92--104
\crossref{https://doi.org/10.1134/S0081543807010063}
\elib{https://elibrary.ru/item.asp?id=13557085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248402027}
Linking options:
https://www.mathnet.ru/eng/tm458
https://www.mathnet.ru/eng/tm/v256/p102
This publication is cited in the following 4 articles:
A. V. Dmitruk, “Variations of v-change of time in an optimal control problem with state and mixed constraints”, Izv. Math., 87:4 (2023), 726–767
Osmolovskii N.P., “Necessary Second-Order Conditions For a Strong Local Minimum in a Problem With Endpoint and Control Constraints”, J. Optim. Theory Appl., 185:1 (2020), 1–16
Bonnans J.F., Pfeiffer L., Serea O.S., “Sensitivity Analysis for Relaxed Optimal Control Problems with Final-State Constraints”, Nonlinear Anal.-Theory Methods Appl., 89 (2013), 55–80
Dmitruk A.V., “On the development of Pontryagin's Maximum Principle in the works of A.Ya. Dubovitskii and AA Milyutin”, Control Cybernet, 38:4, Part A Sp. Iss. SI (2009), 923–957