Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 319, Pages 251–267
DOI: https://doi.org/10.4213/tm4266
(Mi tm4266)
 

Generalized Markov–Bernstein Inequalities and Stability of Dynamical Systems

Vladimir Yu. Protasovab

a Lomonosov Moscow State University, Moscow, 119991 Russia
b University of L'Aquila, piazza Santa Margherita 2, 67100 L'Aquila, Italy
References:
Abstract: We analyze the Markov–Bernstein type inequalities between the norms of functions and of their derivatives for complex exponential polynomials. We establish a relation between the sharp constants in these inequalities and the stability problem for linear switching systems. In particular, the maximal discretization step is estimated. We prove the monotonicity of the sharp constants with respect to the exponents, provided those exponents are real. This gives asymptotically tight uniform bounds and the general form of the extremal polynomial. The case of complex exponent is left as an open problem.
Keywords: exponential polynomial, quasipolynomial, Bernstein inequality, inequality between derivative, Chebyshev system, stability, Lyapunov exponent, Lyapunov functions, dynamical switching system.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
This work is supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS.”
Received: January 11, 2022
Revised: March 25, 2022
Accepted: March 31, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 319, Pages 237–252
DOI: https://doi.org/10.1134/S0081543822050169
Bibliographic databases:
Document Type: Article
UDC: 517.518.862+517.929.4+517.587
Language: Russian
Citation: Vladimir Yu. Protasov, “Generalized Markov–Bernstein Inequalities and Stability of Dynamical Systems”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 251–267; Proc. Steklov Inst. Math., 319 (2022), 237–252
Citation in format AMSBIB
\Bibitem{Pro22}
\by Vladimir~Yu.~Protasov
\paper Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 251--267
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4266}
\crossref{https://doi.org/10.4213/tm4266}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 237--252
\crossref{https://doi.org/10.1134/S0081543822050169}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148437538}
Linking options:
  • https://www.mathnet.ru/eng/tm4266
  • https://doi.org/10.4213/tm4266
  • https://www.mathnet.ru/eng/tm/v319/p251
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :54
    References:48
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025