Processing math: 100%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 87–108
DOI: https://doi.org/10.4213/tm4158
(Mi tm4158)
 

This article is cited in 11 scientific papers (total in 11 papers)

Disclinations in the Geometric Theory of Defects

M. O. Katanaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: In the geometric theory of defects, media with a spin structure (for example, ferromagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the case with the Euclidean metric, which corresponds to the absence of elastic deformations, but with nontrivial SO(3) connection, which produces nontrivial curvature and torsion tensors. We show that the 't Hooft–Polyakov monopole has a physical interpretation; namely, in solid state physics it describes media with continuous distribution of dislocations and disclinations. To describe single disclinations, we use the Chern–Simons action. We give two examples of point disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for which the n-field takes a fixed value at infinity and has an essential singularity at the origin. We also construct an example of linear disclinations with Frank vector divisible by 2π.
Funding agency Grant number
Russian Foundation for Basic Research 19-11-50067
This work was supported by the Russian Foundation for Basic Research, project no. 19-11-50067.
Received: May 16, 2020
Revised: November 15, 2020
Accepted: December 12, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 78–98
DOI: https://doi.org/10.1134/S0081543821020097
Bibliographic databases:
Document Type: Article
UDC: 514.86
Language: Russian
Citation: M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 87–108; Proc. Steklov Inst. Math., 313 (2021), 78–98
Citation in format AMSBIB
\Bibitem{Kat21}
\by M.~O.~Katanaev
\paper Disclinations in the Geometric Theory of Defects
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 87--108
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4158}
\crossref{https://doi.org/10.4213/tm4158}
\elib{https://elibrary.ru/item.asp?id=46904437}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 78--98
\crossref{https://doi.org/10.1134/S0081543821020097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110980191}
Linking options:
  • https://www.mathnet.ru/eng/tm4158
  • https://doi.org/10.4213/tm4158
  • https://www.mathnet.ru/eng/tm/v313/p87
  • This publication is cited in the following 11 articles:
    1. F. L. Carneiro, B. C. C. Carneiro, D. L. Azevedo, S. C. Ulhoa, “On Nanocones as Gravitational Analog Systems”, Annalen der Physik, 2025  crossref
    2. Muzaffer Adak, Tekin Dereli, Ertan Kok, Özcan Sert, “Reformulation of Continuum Defects in Terms of the General Teleparallel Geometry in the Language of Exterior Algebra”, Int J Theor Phys, 64:4 (2025)  crossref
    3. F. L. Carneiro, S. C. Ulhoa, “On black holes as topological defects”, Int. J. Geom. Methods Mod. Phys., 21:01 (2024)  crossref  mathscinet
    4. Manuel Valle, Miguel Á. Vázquez-Mozo, “Torsional constitutive relations at finite temperature”, J. High Energ. Phys., 2024:2 (2024)  crossref  mathscinet
    5. S. A. Jafari, “Moving frame theory of zero-bias photocurrent on the surface of topological insulators”, Phys. Rev. Research, 6:3 (2024)  crossref
    6. M. O. Katanaev, “'t Hooft–Polyakov monopoles and a general spherically symmetric solution of the Bogomolny equations”, Modern Phys. Lett. A, 38:16 (2023), 2350082, 8 pp.  mathnet  crossref  mathscinet
    7. N. Candemir, A.N. Özdemir, “Linear and nonlinear optical properties in a GaAs quantum dot with disclination under magnetic field and Aharonov-Bohm flux field”, Physics Letters A, 492 (2023), 129226  crossref  mathscinet
    8. M. Hirano, H. Nagahama, “Nonmetricity on Riemann–Cartan–Weyl manifold: Its physical and mathematical meaning and application”, Int. J. Geom. Methods Mod. Phys., 19:10 (2022)  crossref  mathscinet
    9. M. O. Katanaev, “On spherically symmetric 't Hooft Polyakov monopoles”, Int. J. Mod. Phys. A, 37:20 (2022), 2243012–14  mathnet  crossref  mathscinet
    10. Katanaev M.O., “Spin Distribution For the `T Hooft-Polyakov Monopole in the Geometric Theory of Defects”, Universe, 7:8 (2021), 256  crossref  mathscinet  isi  scopus
    11. Katanaev M.O., “Spherically Symmetric `T Hooft-Polyakov Monopoles”, Eur. Phys. J. C, 81:9 (2021), 825  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :164
    References:50
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025