Abstract:
In the geometric theory of defects, media with a spin structure (for example, ferromagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the case with the Euclidean metric, which corresponds to the absence of elastic deformations, but with nontrivial SO(3) connection, which produces nontrivial curvature and torsion tensors. We show that the 't Hooft–Polyakov monopole has a physical interpretation; namely, in solid state physics it describes media with continuous distribution of dislocations and disclinations. To describe single disclinations, we use the Chern–Simons action. We give two examples of point disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for which the n-field takes a fixed value at infinity and has an essential singularity at the origin. We also construct an example of linear disclinations with Frank vector divisible by 2π.
Citation:
M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 87–108; Proc. Steklov Inst. Math., 313 (2021), 78–98
\Bibitem{Kat21}
\by M.~O.~Katanaev
\paper Disclinations in the Geometric Theory of Defects
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 87--108
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4158}
\crossref{https://doi.org/10.4213/tm4158}
\elib{https://elibrary.ru/item.asp?id=46904437}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 78--98
\crossref{https://doi.org/10.1134/S0081543821020097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110980191}
Linking options:
https://www.mathnet.ru/eng/tm4158
https://doi.org/10.4213/tm4158
https://www.mathnet.ru/eng/tm/v313/p87
This publication is cited in the following 11 articles:
F. L. Carneiro, B. C. C. Carneiro, D. L. Azevedo, S. C. Ulhoa, “On Nanocones as Gravitational Analog Systems”, Annalen der Physik, 2025
Muzaffer Adak, Tekin Dereli, Ertan Kok, Özcan Sert, “Reformulation of Continuum Defects in Terms of the General Teleparallel Geometry in the Language of Exterior Algebra”, Int J Theor Phys, 64:4 (2025)
F. L. Carneiro, S. C. Ulhoa, “On black holes as topological defects”, Int. J. Geom. Methods Mod. Phys., 21:01 (2024)
Manuel Valle, Miguel Á. Vázquez-Mozo, “Torsional constitutive relations at finite temperature”, J. High Energ. Phys., 2024:2 (2024)
S. A. Jafari, “Moving frame theory of zero-bias photocurrent on the surface of topological insulators”, Phys. Rev. Research, 6:3 (2024)
M. O. Katanaev, “'t Hooft–Polyakov monopoles and a general spherically symmetric solution of the Bogomolny equations”, Modern Phys. Lett. A, 38:16 (2023), 2350082, 8 pp.
N. Candemir, A.N. Özdemir, “Linear and nonlinear optical properties in a GaAs quantum dot with disclination under magnetic field and Aharonov-Bohm flux field”, Physics Letters A, 492 (2023), 129226
M. Hirano, H. Nagahama, “Nonmetricity on Riemann–Cartan–Weyl manifold: Its physical and mathematical meaning and application”, Int. J. Geom. Methods Mod. Phys., 19:10 (2022)
M. O. Katanaev, “On spherically symmetric 't Hooft Polyakov monopoles”, Int. J. Mod. Phys. A, 37:20 (2022), 2243012–14
Katanaev M.O., “Spin Distribution For the `T Hooft-Polyakov Monopole in the Geometric Theory of Defects”, Universe, 7:8 (2021), 256