Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 305, Pages 71–85
DOI: https://doi.org/10.4213/tm3993
(Mi tm3993)
 

This article is cited in 13 scientific papers (total in 13 papers)

Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints

A. M. Vershikabc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, Russia
b Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetskii pr. 28, Peterhof, St. Petersburg, 198504 Russia
c Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia
References:
Abstract: We consider three uniqueness theorems: one from the theory of meromorphic functions, another from asymptotic combinatorics, and the third concerns representations of the infinite symmetric group. The first theorem establishes the uniqueness of the function expz in a class of entire functions. The second is about the uniqueness of a random monotone nondegenerate numbering of the two-dimensional lattice Z2+, or of a nondegenerate central measure on the space of infinite Young tableaux. And the third theorem establishes the uniqueness of a representation of the infinite symmetric group SN whose restrictions to finite subgroups have vanishingly few invariant vectors. However, in fact all the three theorems are, up to a nontrivial rephrasing of conditions from one area of mathematics in terms of another area, the same theorem! Up to now, researchers working in each of these areas have not been aware of this equivalence. The parallelism of these uniqueness theorems on the one hand and the difference of their proofs on the other call for a deeper analysis of the nature of uniqueness and suggest transferring the methods of proof between the areas. More exactly, each of these theorems establishes the uniqueness of the so-called Plancherel measure, which is the main object of our paper. In particular, we show that this notion is general for all locally finite groups.
Funding agency Grant number
Russian Science Foundation 17-71-20153
This work is supported by the Russian Science Foundation under grant 17-71-20153 and performed at the St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences.
Received: October 30, 2018
Revised: December 24, 2018
Accepted: March 13, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 305, Pages 63–77
DOI: https://doi.org/10.1134/S0081543819030052
Bibliographic databases:
Document Type: Article
UDC: 512.542.74+517.987.5
Language: Russian
Citation: A. M. Vershik, “Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 71–85; Proc. Steklov Inst. Math., 305 (2019), 63–77
Citation in format AMSBIB
\Bibitem{Ver19}
\by A.~M.~Vershik
\paper Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 71--85
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3993}
\crossref{https://doi.org/10.4213/tm3993}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017602}
\elib{https://elibrary.ru/item.asp?id=41680610}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 63--77
\crossref{https://doi.org/10.1134/S0081543819030052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491421700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073528097}
Linking options:
  • https://www.mathnet.ru/eng/tm3993
  • https://doi.org/10.4213/tm3993
  • https://www.mathnet.ru/eng/tm/v305/p71
  • This publication is cited in the following 13 articles:
    1. Fengmei Jing, Song Wang, Tonio Sant, Christopher Micallef, Jean Paul Mollicone, “Numerical Simulation Method of Hydraulic Power Take-Off of Point-Absorbing Wave Energy Device Based on Simulink”, Energies, 17:14 (2024), 3590  crossref
    2. A. M. Vershik, “Kommentarii k rabote E. Toma “Kharaktery schetnoi beskonechnoi simmetricheskoi gruppy” i alternativnaya formulirovka problemy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXV, Zap. nauchn. sem. POMI, 528, POMI, SPb., 2023, 37–46  mathnet
    3. A. M. Vershik, “One-dimensional central measures on numberings of ordered sets”, Funct. Anal. Appl., 56:4 (2022), 251–256  mathnet  crossref  crossref
    4. A. M. Vershik, F. V. Petrov, “A generalized Maxwell–Poincaré lemma and Wishart measures”, J. Math. Sci., 261:5 (2022), 601  crossref  mathscinet
    5. A. M. Vershik, N. V. Tsilevich, “Ergodicity and Totality of Partitions Associated with the RSK Correspondence”, Funct. Anal. Appl., 55:1 (2021), 26–33  mathnet  crossref  crossref  isi  elib
    6. A. M. Vershik, N. V. Tsilevich, “The Schur–Weyl graph and Thoma's theorem.”, Funct. Anal. Appl., 55:3 (2021), 198–209  mathnet  crossref  crossref  isi
    7. A. M. Vershik, “Groups generated by involutions, numberings of posets, and central measures”, Russian Math. Surveys, 76:4 (2021), 729–731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. M. Vershik, “A method of defining central and Gibbs measures and the ergodic method”, Dokl. Math., 103:2 (2021), 72–75  mathnet  crossref  crossref  zmath  elib
    9. A. M. Vershik, “Kombinatornoe kodirovanie skhem Bernulli i asimptotika tablits Yunga”, Funkts. analiz i ego pril., 54:2 (2020), 3–24  mathnet  crossref  mathscinet
    10. A. M. Vershik, “Combinatorial Encoding of Bernoulli Schemes and the Asymptotic Behavior of Young Tableaux”, Funct Anal Its Appl, 54:2 (2020), 77  crossref  mathscinet
    11. A. M. Vershik, “The Problem of Combinatorial Encoding of a Continuous Dynamics and the Notion of Transfer of Paths in Graphs”, J Math Sci, 247:5 (2020), 646  crossref  mathscinet
    12. P. Nikitin, “The Absolute of the Comb Graph”, J Math Sci, 247:5 (2020), 723  crossref  mathscinet
    13. A. M. Vershik, “The problem of combinatorial encoding of a continuous dynamics and the notion of transfer of paths in graphs”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 12–28  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :104
    References:47
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025