Processing math: 100%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 176–201
DOI: https://doi.org/10.1134/S0371968518030081
(Mi tm3936)
 

This article is cited in 8 scientific papers (total in 8 papers)

Delone sets in R3 with 2R-regularity conditions

N. P. Dolbilin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (406 kB) Citations (8)
References:
Abstract: A regular system is the orbit of a point with respect to a crystallographic group. The central problem of the local theory of regular systems is to determine the value of the regularity radius, i.e., the radius of neighborhoods/clusters whose identity in a Delone (r,R)‑set guarantees its regularity. In this paper, conditions are described under which the regularity of a Delone set in three-dimensional Euclidean space follows from the pairwise congruence of small clusters of radius 2R. Combined with the analysis of one particular case, this result also implies the proof of the "10R-theorem," which states that the congruence of clusters of radius 10R in a Delone set implies the regularity of this set.
Keywords: Delone set, crystallographic group, regular system, regularity radius, cluster.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 10, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 161–185
DOI: https://doi.org/10.1134/S0081543818060081
Bibliographic databases:
Document Type: Article
UDC: 514.1+514.8+548.1
Language: Russian
Citation: N. P. Dolbilin, “Delone sets in R3 with 2R-regularity conditions”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 176–201; Proc. Steklov Inst. Math., 302 (2018), 161–185
Citation in format AMSBIB
\Bibitem{Dol18}
\by N.~P.~Dolbilin
\paper Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 176--201
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3936}
\crossref{https://doi.org/10.1134/S0371968518030081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894644}
\elib{https://elibrary.ru/item.asp?id=36503440}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 161--185
\crossref{https://doi.org/10.1134/S0081543818060081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059448239}
Linking options:
  • https://www.mathnet.ru/eng/tm3936
  • https://doi.org/10.1134/S0371968518030081
  • https://www.mathnet.ru/eng/tm/v302/p176
  • This publication is cited in the following 8 articles:
    1. Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal, “Bounds for the regularity radius of Delone sets”, Discrete Comput. Geom., 2024, 1–17  mathnet  crossref  isi
    2. N. P. Dolbilin, “Local Theory of Regular Systems and Delone Sets”, Proc. Steklov Inst. Math., 325 (2024), 120–135  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. M. I. Shtogrin, “On a convex polyhedron in a regular point system”, Izv. Math., 86:3 (2022), 586–619  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. N. P. Dolbilin, M. I. Shtogrin, “Delone Sets and Tilings: Local Approach”, Proc. Steklov Inst. Math., 318 (2022), 65–89  mathnet  crossref  crossref
    5. N. P. Dolbilin, M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane”, Comput. Math. Math. Phys., 62:8 (2022), 1265–1274  mathnet  mathnet  crossref  crossref  mathscinet
    6. N. P. Dolbilin, M. I. Shtogrin, “Local groups in Delone sets: a conjecture and results”, Russian Math. Surveys, 76:6 (2021), 1137–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Dolbilin N., Garber A., Leopold U., Schulte E., Senechal M., “On the Regularity Radius of Delone Sets in R-3”, Discret. Comput. Geom., 66:3 (2021), 996–1024  crossref  mathscinet  isi
    8. Nikolay Dolbilin, “Local groups in Delone sets”, Lect. Notes Comput. Sci. Eng., 143 (2021), 3–11  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :68
    References:52
    First page:24
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025