Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 241, Pages 132–168 (Mi tm393)  

This article is cited in 13 scientific papers (total in 13 papers)

On a Classical Correspondence between K3 Surfaces

C. G. Madonnaa, V. V. Nikulinbc

a Università degli Studi di Roma — Tor Vergata
b Steklov Mathematical Institute, Russian Academy of Sciences
c University of Liverpool
References:
Abstract: Let X be a K3 surface that is the intersection (i.e. a net P2) of three quadrics in P5. The curve of degenerate quadrics has degree 6 and defines a natural double covering Y of P2 ramified in this curve which is again a K3. This is a classical example of a correspondence between K3 surfaces that is related to the moduli of sheaves on K3 studied by Mukai. When are general (for fixed Picard lattices) X and Y isomorphic? We give necessary and sufficient conditions in terms of Picard lattices of X and Y. For example, for the Picard number 2, the Picard lattice of X and Y is defined by its determinant d, where d>0, d1mod8, and one of the equations a2db2=8 or a2db2=8 has an integral solution (a,b). Clearly, the set of these d is infinite: d{(a28)/b2}, where a and b are odd integers. This gives all possible divisorial conditions on the 19-dimensional moduli of intersections of three quadrics X in P5, which imply YX. One of them, when X has a line, is classical and corresponds to d=17. Similar considerations can be applied to a realization of an isomorphism (T(X)Q,H2,0(X))(T(Y)Q,H2,0(Y)) of transcendental periods over Q of two K3 surfaces X and Y by a fixed sequence of types of Mukai vectors.
Received in November 2002
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: C. G. Madonna, V. V. Nikulin, “On a Classical Correspondence between K3 Surfaces”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 132–168; Proc. Steklov Inst. Math., 241 (2003), 120–153
Citation in format AMSBIB
\Bibitem{MadNik03}
\by C.~G.~Madonna, V.~V.~Nikulin
\paper On a~Classical Correspondence between K3 Surfaces
\inbook Number theory, algebra, and algebraic geometry
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 241
\pages 132--168
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm393}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2024049}
\zmath{https://zbmath.org/?q=an:1076.14046}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 241
\pages 120--153
Linking options:
  • https://www.mathnet.ru/eng/tm393
  • https://www.mathnet.ru/eng/tm/v241/p132
  • This publication is cited in the following 13 articles:
    1. Kapustka G., Kapustka M., Moschetti R., “Equivalence of K3 Surfaces From Verra Threefolds”, Kyoto J. Math., 60:4 (2020), 1209–1226  crossref  mathscinet  isi
    2. Kuznetsov A., Shinder E., “Grothendieck Ring of Varieties, D- and l-Equivalence, and Families of Quadrics”, Sel. Math.-New Ser., 24:4 (2018), 3475–3500  crossref  mathscinet  zmath  isi  scopus
    3. V. A. Krasnov, “On a classical correspondence of real K3 surfaces”, Izv. Math., 82:4 (2018), 662–693  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Cynk S., Rams S., “on Calabi-Yau Threefolds Associated To a Web of Quadrics”, Forum Math., 27:2 (2015), 699–734  crossref  mathscinet  zmath  isi  elib  scopus
    5. Michalek M., “Birational Maps Between Calabi-Yau Manifolds Associated to Webs of Quadrics”, J. Algebra, 370 (2012), 186–197  crossref  mathscinet  zmath  isi  scopus
    6. Madonna C.G., “On Some Moduli Spaces of Bundles on K3 Surfaces, II”, Proc. Amer. Math. Soc., 140:10 (2012), 3397–3408  crossref  mathscinet  zmath  isi  elib  scopus
    7. Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Proc. Steklov Inst. Math., 273 (2011), 229–237  mathnet  crossref  mathscinet  zmath  isi  elib
    8. C. G. Madonna, V. V. Nikulin, “Explicit correspondences of a K3 surface with itself”, Izv. Math., 72:3 (2008), 497–508  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. Dujella A., Franušić Z., “On differences of two squares in some quadratic fields”, Rocky Mountain J. Math., 37:2 (2007), 429–453  crossref  mathscinet  zmath  isi  scopus
    10. Cynk S., Rams S., “On a map between two K3 surfaces associated to a net of quadrics”, Arch. Math. (Basel), 88:2 (2007), 109–122  crossref  mathscinet  zmath  isi  scopus
    11. Nikulin V.V., “On correspondences of a K3 surface with itself. II”, Algebraic Geometry, Contemporary Mathematics Series, 422, 2007, 121–172  crossref  mathscinet  zmath  isi
    12. Madonna C.G., “On some moduli spaces of bundles on K3 surfaces”, Monatsh. Math., 146:4 (2005), 333–339  crossref  mathscinet  zmath  isi  scopus
    13. V. V. Nikulin, “On Correspondences of a K3 Surface with Itself. I”, Proc. Steklov Inst. Math., 246 (2004), 204–226  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :146
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025