Abstract:
V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose SU-bordism classes generate the special unitary bordism ring ΩSU[12]≅Z[12][yi:i⩾2]. We also describe explicit Calabi–Yau representatives for multiplicative generators of the SU-bordism ring in low dimensions.
The first author was supported by the General Financial Grant from the China Postdoctoral Science Foundation, grant no. 2016M601486. The second author was supported by the NSFC, grant nos. 11371093, 11661131004 and 11431009. The third author was supported by the Russian Foundation for Basic Research (project nos. 17-01-00671 and 16-51-55017) and by the Simons–IUM fellowship.
Citation:
Ivan Yu. Limonchenko, Zhi Lü, Taras E. Panov, “Calabi–Yau hypersurfaces and SU-bordism”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 287–295; Proc. Steklov Inst. Math., 302 (2018), 270–278
\Bibitem{LimLuPan18}
\by Ivan~Yu.~Limonchenko, Zhi~Lü, Taras~E.~Panov
\paper Calabi--Yau hypersurfaces and SU-bordism
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 287--295
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3922}
\crossref{https://doi.org/10.1134/S0371968518030135}
\elib{https://elibrary.ru/item.asp?id=36503445}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 270--278
\crossref{https://doi.org/10.1134/S0081543818060135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059531406}
Linking options:
https://www.mathnet.ru/eng/tm3922
https://doi.org/10.1134/S0371968518030135
https://www.mathnet.ru/eng/tm/v302/p287
This publication is cited in the following 7 articles:
H. Sati, U. Schreiber, “M/F-theory as Mf-theory”, Rev. Math. Phys., 35:10 (2023), 2350028
Ivan Yu. Limonchenko, Grigory D. Solomadin, “On the Homotopy Decomposition for the Quotient of a Moment–Angle Complex and Its Applications”, Proc. Steklov Inst. Math., 317 (2022), 117–140
Ivan Yu. Limonchenko, Leonid V. Monin, Askold G. Khovanskii, “Generalized Virtual Polytopes and Quasitoric Manifolds”, Proc. Steklov Inst. Math., 318 (2022), 126–149
A. Khovanskii, I. Limonchenko, L. Monin, “Cohomology rings of quasitoric bundles”, Filomat, 36:19 (2022), 6513
J. H. Kim, “On null cobordism classes of quasitoric manifolds and their small covers”, Topology Appl., 285 (2020), 107412
I. Yu. Limonchenko, T. E. Panov, G. S. Chernykh, “SU-bordism: structure results and geometric representatives”, Russian Math. Surveys, 74:3 (2019), 461–524
V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87