Abstract:
Let d⩾2 and E⊂Rd be a set. A ridge function on E is a function of the form φ(a⋅x), where x=(x1,…,xd)∈E, a=(a1,…,ad)∈Rd∖{0}, a⋅x=∑dj=1ajxj, and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
This work is supported by the Program of the Presidium of the Russian Academy of Sciences no. 01 “Fundamental Mathematics and Its Applications” under grant PRAS-18-01 (S.V.K.) and by a grant of the Government of the Russian Federation (project no. 14.W03.31.0031, A.A.K.).
Citation:
S. V. Konyagin, A. A. Kuleshov, V. E. Maiorov, “Some problems in the theory of ridge functions”, Complex analysis, mathematical physics, and applications, Collected papers, Trudy Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 155–181; Proc. Steklov Inst. Math., 301 (2018), 144–169
\Bibitem{KonKulMai18}
\by S.~V.~Konyagin, A.~A.~Kuleshov, V.~E.~Maiorov
\paper Some problems in the theory of ridge functions
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 155--181
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3913}
\crossref{https://doi.org/10.1134/S0371968518020127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841666}
\elib{https://elibrary.ru/item.asp?id=35246327}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 144--169
\crossref{https://doi.org/10.1134/S0081543818040120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442104600012}
\elib{https://elibrary.ru/item.asp?id=35722823}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051717697}
Linking options:
https://www.mathnet.ru/eng/tm3913
https://doi.org/10.1134/S0371968518020127
https://www.mathnet.ru/eng/tm/v301/p155
This publication is cited in the following 8 articles:
Mathias Hoy Talbo, Haishuai Wang, Lianhua Chi, Yi-Ping Phoebe Chen, “Validating Siamese embedded neural networks with identical representations for efficient model convergence”, Knowledge-Based Systems, 286 (2024), 111379
Yu. Malykhin, K. Ryutin, T. Zaitseva, “Recovery of regular ridge functions on the ball”, Constr. Approx., 2022
I. G. Kazantsev, R. Z. Turebekov, M. A. Sultanov, “Restoration of images corrupted by stripe interference using Radon domain filtering”, Sib. elektron. matem. izv., 19:2 (2022), 540–547
L. Ma, J. W. Siegel, J. Xu, “Uniform approximation rates and metric entropy of shallow neural networks”, Res. Math. Sci., 9:3 (2022), 46
I. G. Kazantsev, R. Z. Turebekov, M. A. Sultanov, “Modeling regular textures in images using the Radon transform”, J. Appl. Industr. Math., 15:2 (2021), 223–233
R. Parhi, R. D. Nowak, “Banach space representer theorems for neural networks and ridge splines”, J. Mach. Learn. Res., 22 (2021)
R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “On the representation by bivariate ridge functions”, Ukr. Mat. Zhurn., 73:5 (2021), 579
R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “On the representation by bivariate ridge functions”, Ukr. Math. J., 73:5 (2021), 675–685