Abstract:
The Selberg class SS consists of functions L(s)L(s) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in SS that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts L(s+iτ)L(s+iτ), τ∈R. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts L(s+ikh), k=0,1,…, where h>0 is an arbitrary fixed number.
Citation:
A. Laurinčikas, R. Macaitienė, “Discrete universality in the Selberg class”, Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, MAIK Nauka/Interperiodica, Moscow, 2017, 155–169; Proc. Steklov Inst. Math., 299 (2017), 143–156
\Bibitem{LauMac17}
\by A.~Laurin{\v{c}}ikas, R.~Macaitien{\.e}
\paper Discrete universality in the Selberg class
\inbook Analytic number theory
\bookinfo On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 299
\pages 155--169
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3828}
\crossref{https://doi.org/10.1134/S0371968517040100}
\elib{https://elibrary.ru/item.asp?id=32543415}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 299
\pages 143--156
\crossref{https://doi.org/10.1134/S0081543817080107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425317900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042163833}
Linking options:
https://www.mathnet.ru/eng/tm3828
https://doi.org/10.1134/S0371968517040100
https://www.mathnet.ru/eng/tm/v299/p155
This publication is cited in the following 4 articles:
Roma Kačinskaitė, Antanas Laurinčikas, Brigita Žemaitienė, “Joint Discrete Universality in the Selberg–Steuding Class”, Axioms, 12:7 (2023), 674
R. Kacinskaite, “On discrete universality in the Selberg–Steuding class”, Siberian Math. J., 63:2 (2022), 277–285
N. N. Dobrovol'skii, “Abscissa of Absolute Convergence of a Class of Generalized Euler Products”, Math. Notes, 109:3 (2021), 483–488
A. Balčiūnas, R. Macaitienė, D. Šiaučiūnas, “Joint discrete universality for L-functions from the Selberg class and periodic Hurwitz zeta-functions”, Chebyshevskii sb., 20:1 (2019), 46–65