Abstract:
For any α∈(0,1), c∈R+∖{1} and γ>0 and for Lebesgue almost all irrational ρ∈(0,1), any two C2+α-smooth circle diffeomorphisms with a break, with the same rotation number ρ and the same size of the breaks c, are conjugate to each other via a C1-smooth conjugacy whose derivative is uniformly continuous with modulus of continuity ω(x)=A|logx|−γ for some A>0.
Citation:
Konstantin Khanin, Saša Kocić, “On the smoothness of the conjugacy between circle maps with a break”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 224–231; Proc. Steklov Inst. Math., 297 (2017), 200–207
\Bibitem{KhaKoc17}
\by Konstantin~Khanin, Sa{\v s}a~Koci\'c
\paper On the smoothness of the conjugacy between circle maps with a~break
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 224--231
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3798}
\crossref{https://doi.org/10.1134/S0371968517020121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695415}
\elib{https://elibrary.ru/item.asp?id=29859498}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 200--207
\crossref{https://doi.org/10.1134/S0081543817040125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029160320}
Linking options:
https://www.mathnet.ru/eng/tm3798
https://doi.org/10.1134/S0371968517020121
https://www.mathnet.ru/eng/tm/v297/p224
This publication is cited in the following 1 articles:
Nataliya Goncharuk, Konstantin Khanin, Yury Kudryashov, “Circle homeomorphisms with breaks with no C2−ν conjugacy”, JMD, 19 (2023), 751