Abstract:
We prove an asymptotic formula for the second moment of primitive $L$-functions of even weight and prime power level. The error term is estimated uniformly in all parameters: level, weight, shift, and twist.
The work of O. G. Balkanova (Section 7 and in part Sections 1–5 and 8) is supported by the Russian Science Foundation under grant 14-11-00335 and performed in the Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences. The work of D. A. Frolenkov (Section 6 and in part Sections 1–5 and 8) is supported by the Russian Science Foundation under grant 14-50-00005 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.
Citation:
Olga G. Balkanova, Dmitry A. Frolenkov, “A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 20–53; Proc. Steklov Inst. Math., 294 (2016), 13–46
\Bibitem{BalFro16}
\by Olga~G.~Balkanova, Dmitry~A.~Frolenkov
\paper A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 20--53
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3725}
\crossref{https://doi.org/10.1134/S037196851603002X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628491}
\elib{https://elibrary.ru/item.asp?id=26601049}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 13--46
\crossref{https://doi.org/10.1134/S008154381606002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386554900002}
\elib{https://elibrary.ru/item.asp?id=27586854}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992092088}
Linking options:
https://www.mathnet.ru/eng/tm3725
https://doi.org/10.1134/S037196851603002X
https://www.mathnet.ru/eng/tm/v294/p20
This publication is cited in the following 5 articles:
Balkanova O., “The First Moment of Maass Form Symmetric Squarel-Functions”, Ramanujan J., 55:2 (2021), 761–781
D. A. Frolenkov, “Nondiagonal terms in the second moment of automorphic $L$-functions”, Sb. Math., 211:8 (2020), 1171–1189
D. Frolenkov, “The cubic moment of automorphic l-functions in the weight aspect”, J. Number Theory, 207 (2020), 247–281
O. Balkanova, D. Frolenkov, “Non-vanishing of automorphic $L$ -functions of prime power level”, Monatsh. Math., 185:1 (2018), 17–41
V. A. Bykovskii, D. A. Frolenkov, “Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line”, Izv. Math., 81:2 (2017), 239–268