Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 239, Pages 20–51 (Mi tm357)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Density of a Lattice Covering for n=11 and n=14

M. M. Anzin

"Centron"
Full-text PDF (405 kB) Citations (4)
References:
Abstract: For the Coxeter lattices A411 and A514, a full description of the structure of the L-partition as well as the structure of the Voronoi–Dirichlet polyhedra as polyhedra defined by their vertices is given. On the basis of this description, exact values of the covering radius and the density function are evaluated for the lattice coverings corresponding to these lattices. In both cases, the values of the density function of the covering proved to be better (less) than the formerly known values. Thus, for n=11 and n=14, improved estimates are obtained for the minimum density of lattice coverings of the Euclidean space with equal balls.
Received in April 2002
Bibliographic databases:
UDC: 514.174+511.9+519
Language: Russian
Citation: M. M. Anzin, “On the Density of a Lattice Covering for n=11 and n=14”, Discrete geometry and geometry of numbers, Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov, Trudy Mat. Inst. Steklova, 239, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 20–51; Proc. Steklov Inst. Math., 239 (2002), 13–44
Citation in format AMSBIB
\Bibitem{Anz02}
\by M.~M.~Anzin
\paper On the Density of a~Lattice Covering for $n=11$ and $n=14$
\inbook Discrete geometry and geometry of numbers
\bookinfo Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 239
\pages 20--51
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1975133}
\zmath{https://zbmath.org/?q=an:1118.11304}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 239
\pages 13--44
Linking options:
  • https://www.mathnet.ru/eng/tm357
  • https://www.mathnet.ru/eng/tm/v239/p20
  • This publication is cited in the following 4 articles:
    1. M. M. Anzin, “O plotnosti reshetchatogo pokrytiya dlya $n=17$”, Chebyshevskii sb., 16:3 (2015), 35–69  mathnet  elib
    2. Bremner D., Sikiric M.D., Schuermann A., “Polyhedral Representation Conversion up to Symmetries”, Polyhedral Computation, CRM Proceedings & Lecture Notes, 48, 2009, 45–71  crossref  mathscinet  zmath  isi
    3. Sikiric M.D., Schuermann A., Vallentin F., “Classification of eight–dimensional perfect forms”, Electronic Research Announcements of the American Mathematical Society, 13 (2007), 21–32  crossref  mathscinet  zmath  isi  scopus
    4. M. M. Anzin, “On lattice covering density for $n=13$ and $n=15$”, Math. Notes, 79:5 (2006), 721–725  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :134
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025