Processing math: 100%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 285, Pages 166–206
DOI: https://doi.org/10.1134/S0371968514020125
(Mi tm3546)
 

This article is cited in 13 scientific papers (total in 13 papers)

p-Adic wavelets and their applications

S. V. Kozyreva, A. Yu. Khrennikovb, V. M. Shelkovichcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Center for Mathematical Modeling in Physics, Engineering and Cognitive Sciences, Linnaeus University, Växjö, Sweden
c St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
d St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia
References:
Abstract: The theory of p-adic wavelets is presented. One-dimensional and multidimensional wavelet bases and their relation to the spectral theory of pseudodifferential operators are discussed. For the first time, bases of compactly supported eigenvectors for p-adic pseudodifferential operators were considered by V. S. Vladimirov. In contrast to real wavelets, p-adic wavelets are related to the group representation theory; namely, the frames of p-adic wavelets are the orbits of p-adic transformation groups (systems of coherent states). A p-adic multiresolution analysis is considered and is shown to be a particular case of the construction of a p-adic wavelet frame as an orbit of the action of the affine group.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Linnaeus University
This work was supported in part by the grants "Mathematical Modeling and System Collaboration" and "Mathematical Modeling of Complex Hierarchic Systems" from the Faculty of Natural Science and Engineering, Linnaeus University. The first author was also supported in part by the Russian Academy of Sciences within the program "Modern Problems of Theoretical Mathematics."
Received in October 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 285, Pages 157–196
DOI: https://doi.org/10.1134/S0081543814040129
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.984.5
Language: Russian
Citation: S. V. Kozyrev, A. Yu. Khrennikov, V. M. Shelkovich, “p-Adic wavelets and their applications”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 166–206; Proc. Steklov Inst. Math., 285 (2014), 157–196
Citation in format AMSBIB
\Bibitem{KozKhrShe14}
\by S.~V.~Kozyrev, A.~Yu.~Khrennikov, V.~M.~Shelkovich
\paper $p$-Adic wavelets and their applications
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 166--206
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3546}
\crossref{https://doi.org/10.1134/S0371968514020125}
\elib{https://elibrary.ru/item.asp?id=21726848}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 157--196
\crossref{https://doi.org/10.1134/S0081543814040129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700012}
\elib{https://elibrary.ru/item.asp?id=24048439}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926323154}
Linking options:
  • https://www.mathnet.ru/eng/tm3546
  • https://doi.org/10.1134/S0371968514020125
  • https://www.mathnet.ru/eng/tm/v285/p166
  • This publication is cited in the following 13 articles:
    1. N. Athira, M. C. Lineesh, “Linear and nonlinear pseudo-differential operators on p-adic fields”, J. Pseudo-Differ. Oper. Appl., 15:3 (2024)  crossref
    2. N. Athira, M. C. Lineesh, “Vanishing Moments of Wavelets on p-adic Fields”, Complex Anal. Oper. Theory, 19:1 (2024)  crossref
    3. Owais Ahmad, Neyaz Ahmad Sheikh, “Generalized Multiresolution Structures in Reducing Subspaces of Local Fields”, Acta. Math. Sin.-English Ser., 38:12 (2022), 2163  crossref
    4. Owais Ahmad, Neyaz Ahmad, Mobin Ahmad, “Wavelet bi-frames on local fields”, J. Numer. Anal. Approx. Theory, 51:2 (2022), 124  crossref
    5. Ahmad O. Wani A.H. Sheikh N.A. Ahmad M., “Vector Valued Nonuniform Nonstationary Wavelets and Associated Mra on Local Fields”, J. Appl. Math. Stat. Inform., 17:2 (2021), 19–46  crossref  mathscinet  isi
    6. Ahmad O., Ahmad N., “Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields”, Math. Phys. Anal. Geom., 23:4 (2020), 47  crossref  mathscinet  isi
    7. Yu. A. Farkov, “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci. (N. Y.), 257:1 (2021), 127–137  mathnet  crossref  mathscinet  zmath
    8. P. Dutta, D. Ghoshal, A. Lala, “Enhanced symmetry of the $p$-adic wavelets”, Phys. Lett. B, 783 (2018), 421–427  crossref  mathscinet  isi  scopus
    9. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “$p$-Adic mathematical physics: the first 30 years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
    10. B. Behera, Q. Jahan, “Affine, quasi-affine and co-affine frames on local fields of positive characteristic”, Math. Nachr., 290:14-15 (2017), 2154–2169  crossref  mathscinet  zmath  isi  scopus
    11. S. Evdokimov, “On non-compactly supported $p$-adic wavelets”, J. Math. Anal. Appl., 443:2 (2016), 1260–1266  crossref  mathscinet  zmath  isi  elib  scopus
    12. V. Al Osipov, “Wavelet analysis on symbolic sequences and two-fold de Bruijn sequences”, J. Stat. Phys., 164:1 (2016), 142–165  crossref  mathscinet  zmath  isi  elib  scopus
    13. S. Albeverio, A. Yu. Khrennikov, S. V. Kozyrev, S. A. Vakulenko, I. V. Volovich, “In memory of Vladimir M. Shelkovich (1949–2013)”, P-Adic Num Ultrametr Anal Appl, 5:3 (2013), 242  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:668
    Full-text PDF :238
    References:111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025