Abstract:
This review is devoted to the domains of holomorphy invariant under holomorphic actions of real Lie groups. We have collected here the results on this subject obtained during the last twenty years, which have passed since the publication of the first review of the authors on this topic. This first review was mainly devoted to the case of compact transformation groups, while the first two sections of the present review deal mostly with noncompact groups. In Section 3 we discuss the problem of rigidity of automorphism groups of domains of holomorphy invariant under compact transformation groups.
Citation:
A. G. Sergeev, Xiangyu Zhou, “Invariant domains of holomorphy: Twenty years later”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 253–263; Proc. Steklov Inst. Math., 285 (2014), 241–250
\Bibitem{SerZho14}
\by A.~G.~Sergeev, Xiangyu~Zhou
\paper Invariant domains of holomorphy: Twenty years later
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 253--263
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3537}
\crossref{https://doi.org/10.1134/S0371968514020174}
\elib{https://elibrary.ru/item.asp?id=21726853}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 241--250
\crossref{https://doi.org/10.1134/S0081543814040178}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700017}
\elib{https://elibrary.ru/item.asp?id=24048445}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926325573}
Linking options:
https://www.mathnet.ru/eng/tm3537
https://doi.org/10.1134/S0371968514020174
https://www.mathnet.ru/eng/tm/v285/p253
This publication is cited in the following 3 articles:
Xiangyu Zhou, “Recent Results in Several Complex Variables and Complex Geometry”, Proc. Steklov Inst. Math., 311 (2020), 245–260
Xiangyu Zhou, “Roles of Plurisubharmonic Functions”, Proc. Steklov Inst. Math., 306 (2019), 288–295
Zhou X., “A Survey on L 2 Extension Problem”, Complex Geometry and Dynamics, Abel Symposia, eds. Fornaess J., Irgens M., Wold E., Springer, 2015, 291–309