Abstract:
A critical indecomposable two-type Bellman–Harris branching process is considered in which the life-length of the first-type particles has finite variance while the tail of the life-length distribution of the second-type particles is regularly varying at infinity with parameter β∈(0,1]. It is shown that, contrary to the critical indecomposable Bellman–Harris branching processes with finite variances of the life-lengths of particles of both types, the probability of observing first-type particles at a distant moment t is infinitesimally less than the survival probability of the whole process. In addition, a Yaglom-type limit theorem is proved for the distribution of the number of the first-type particles at moment t given that the population contains particles of the first type at this moment.
Citation:
V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 257–287; Proc. Steklov Inst. Math., 282 (2013), 243–272
\Bibitem{VatTop13}
\by V.~A.~Vatutin, V.~A.~Topchii
\paper Critical Bellman--Harris branching processes with long-living particles
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 257--287
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3480}
\crossref{https://doi.org/10.1134/S0371968513030199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308595}
\elib{https://elibrary.ru/item.asp?id=20280559}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 243--272
\crossref{https://doi.org/10.1134/S0081543813060199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800019}
\elib{https://elibrary.ru/item.asp?id=21883369}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886024707}
Linking options:
https://www.mathnet.ru/eng/tm3480
https://doi.org/10.1134/S0371968513030199
https://www.mathnet.ru/eng/tm/v282/p257
This publication is cited in the following 6 articles:
D. M. Balashova, “Branching random walks with alternating sign intensities of branching sources”, J. Math. Sci., 262:4 (2022), 442–451
V. A. Topchiǐ, “On renewal matrices connected with branching processes with tails of distributions of different orders”, Siberian Adv. Math., 28:2 (2018), 115–153
V. A. Vatutin, V. A. Topchii, “Momenty mnogomernykh kriticheskikh protsessov Bellmana–Kharrisa s razlichnoi skorostyu ubyvaniya khvostov raspredelenii prodolzhitelnosti zhizni chastits”, Sib. elektron. matem. izv., 14 (2017), 1248–1264
Valentin A. Topchiy, “Two-dimensional renewal theorems with weak moment conditions and critical Bellman – Harris branching processes”, Discrete Math. Appl., 26:1 (2016), 51–69
Vatutin V., Iksanov A., Topchii V., “a Two-Type Bellman-Harris Process Initiated By a Large Number of Particles”, Acta Appl. Math., 138:1 (2015), 279–312
E. Vl. Bulinskaya, “Complete classification of catalytic branching processes”, Theory Probab. Appl., 59:4 (2015), 545–566