Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 276, Pages 9–26 (Mi tm3370)  

This article is cited in 9 scientific papers (total in 9 papers)

On the law of the iterated logarithm for permuted lacunary sequences

C. Aistleitner, I. Berkes, R. Tichy

Graz University of Technology, Graz, Austria
Full-text PDF (254 kB) Citations (9)
References:
Abstract: It is known that for any smooth periodic function f the sequence (f(2kx))k1 behaves like a sequence of i.i.d. random variables; for example, it satisfies the central limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that permuting (f(2kx))k1 can ruin the validity of the law of the iterated logarithm, a very surprising result. In this paper we present an optimal condition on (nk)k1, formulated in terms of the number of solutions of certain Diophantine equations, which ensures the validity of the law of the iterated logarithm for any permutation of the sequence (f(nkx))k1. A similar result is proved for the discrepancy of the sequence ({nkx})k1, where {} denotes the fractional part.
Received in July 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 276, Pages 3–20
DOI: https://doi.org/10.1134/S0081543812010026
Bibliographic databases:
Document Type: Article
UDC: 511.37
Language: English
Citation: C. Aistleitner, I. Berkes, R. Tichy, “On the law of the iterated logarithm for permuted lacunary sequences”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 9–26; Proc. Steklov Inst. Math., 276 (2012), 3–20
Citation in format AMSBIB
\Bibitem{AisBerTic12}
\by C.~Aistleitner, I.~Berkes, R.~Tichy
\paper On the law of the iterated logarithm for permuted lacunary sequences
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 9--26
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986106}
\elib{https://elibrary.ru/item.asp?id=17680265}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 3--20
\crossref{https://doi.org/10.1134/S0081543812010026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300002}
\elib{https://elibrary.ru/item.asp?id=24227057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860363038}
Linking options:
  • https://www.mathnet.ru/eng/tm3370
  • https://www.mathnet.ru/eng/tm/v276/p9
  • This publication is cited in the following 9 articles:
    1. K. Fukuyama, Yu. Noda, “On permutational invariance of the metric discrepancy results”, Math. Slovaca, 67:2 (2017), 349–354  crossref  mathscinet  zmath  isi
    2. István Berkes, Number Theory – Diophantine Problems, Uniform Distribution and Applications, 2017, 137  crossref
    3. K. Fukuyama, M. Yamashita, “Metric discrepancy results for geometric progressions with large ratios”, Mon.heft. Math., 180:4 (2016), 731–742  crossref  mathscinet  zmath  isi  scopus
    4. I. Berkes, R. Tichy, “On permutation-invariance of limit theorems”, J. Complex., 31:3 (2015), 372–379  crossref  mathscinet  zmath  isi  scopus
    5. K. Fukuyama, “A metric discrepancy result for the sequence of powers of minus two”, Indag. Math. (N.S.), 25:3 (2014), 487–504  crossref  mathscinet  zmath  isi  scopus
    6. Ch. Aistleitner, “On a problem of Bourgain concerning the L1-norm of exponential sums”, Math. Z., 275:3-4 (2013), 681–688  crossref  mathscinet  zmath  isi  scopus
    7. Ch. Aistleitner, K. Fukuyama, Yu. Furuya, “Optimal bound for the discrepancies of lacunary sequences”, Acta Arith., 158:3 (2013), 229–243  crossref  mathscinet  zmath  isi  scopus
    8. Katusi Fukuyama, “Metric discrepancy results for alternating geometric progressions”, Monatsh Math, 171:1 (2013), 33  crossref
    9. C. Aistleitner, I. Berkes, R. Tichy, “On the system f(nx) and probabilistic number theory”, Analytic and probabilistic methods in number theory, eds. A. Laurincikas, E. Manstavicius, G. Stepanauskas, Tev, Vilnius, 2012, 1–18  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :73
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025