Abstract:
It is known that for any smooth periodic function f the sequence (f(2kx))k⩾1 behaves like a sequence of i.i.d. random variables; for example, it satisfies the central limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that permuting (f(2kx))k⩾1 can ruin the validity of the law of the iterated logarithm, a very surprising result. In this paper we present an optimal condition on (nk)k⩾1, formulated in terms of the number of solutions of certain Diophantine equations, which ensures the validity of the law of the iterated logarithm for any permutation of the sequence (f(nkx))k≥1. A similar result is proved for the discrepancy of the sequence ({nkx})k≥1, where {⋅} denotes the fractional part.
Citation:
C. Aistleitner, I. Berkes, R. Tichy, “On the law of the iterated logarithm for permuted lacunary sequences”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 9–26; Proc. Steklov Inst. Math., 276 (2012), 3–20
\Bibitem{AisBerTic12}
\by C.~Aistleitner, I.~Berkes, R.~Tichy
\paper On the law of the iterated logarithm for permuted lacunary sequences
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 9--26
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986106}
\elib{https://elibrary.ru/item.asp?id=17680265}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 3--20
\crossref{https://doi.org/10.1134/S0081543812010026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300002}
\elib{https://elibrary.ru/item.asp?id=24227057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860363038}
Linking options:
https://www.mathnet.ru/eng/tm3370
https://www.mathnet.ru/eng/tm/v276/p9
This publication is cited in the following 9 articles:
K. Fukuyama, Yu. Noda, “On permutational invariance of the metric discrepancy results”, Math. Slovaca, 67:2 (2017), 349–354
István Berkes, Number Theory – Diophantine Problems, Uniform Distribution and Applications, 2017, 137
K. Fukuyama, M. Yamashita, “Metric discrepancy results for geometric progressions with large ratios”, Mon.heft. Math., 180:4 (2016), 731–742
I. Berkes, R. Tichy, “On permutation-invariance of limit theorems”, J. Complex., 31:3 (2015), 372–379
K. Fukuyama, “A metric discrepancy result for the sequence of powers of minus two”, Indag. Math. (N.S.), 25:3 (2014), 487–504
Ch. Aistleitner, “On a problem of Bourgain concerning the L1-norm of exponential sums”, Math. Z., 275:3-4 (2013), 681–688
Ch. Aistleitner, K. Fukuyama, Yu. Furuya, “Optimal bound for the discrepancies of lacunary sequences”, Acta Arith., 158:3 (2013), 229–243
C. Aistleitner, I. Berkes, R. Tichy, “On the system f(nx) and probabilistic number theory”, Analytic and probabilistic methods in number theory, eds. A. Laurincikas, E. Manstavicius, G. Stepanauskas, Tev, Vilnius, 2012, 1–18