Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 106–116 (Mi tm123)  

This article is cited in 6 scientific papers (total in 6 papers)

The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures

V. K. Zakharov

Centre for New Information Technologies, Moscow State University
Full-text PDF (205 kB) Citations (6)
References:
Abstract: The problem of characterizing integrals considered in this paper dates back to the fundamental works of Riesz (1909), Radon (1913), and Frechet 1914). A solution to this problem is given in the form of a general parametric theorem, which implies the following theorems as particular cases: (1) the Riesz–Radon theorem for a locally compact space, (2) the Prokhorov theorem for a Tikhonov space, and (3) an integral representation theorem for an arbitrary Hausdorff space. A weak compactness criterion for the sets of bounded Radon measures on an arbitrary Hausdorff space is derived as an application of the last theorem. This criterion dates back to the Prokhorov criterion for a Polish space and to the Prokhorov–Le Cam theorem for a Tikhonov space.
Received in October 2004
Bibliographic databases:
UDC: 517.987.1+517.518.1+517.982.3
Language: Russian
Citation: V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 106–116; Proc. Steklov Inst. Math., 248 (2005), 101–110
Citation in format AMSBIB
\Bibitem{Zak05}
\by V.~K.~Zakharov
\paper The Riesz--Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 106--116
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165920}
\zmath{https://zbmath.org/?q=an:1129.28013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 101--110
Linking options:
  • https://www.mathnet.ru/eng/tm123
  • https://www.mathnet.ru/eng/tm/v248/p106
  • This publication is cited in the following 6 articles:
    1. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices”, J. Math. Sci., 185:3 (2012), 417–429  mathnet  crossref
    2. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Russian Math. Surveys, 65:4 (2010), 741–765  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Zakharov V.K., Mikhalev A.V., Rodionov T.V., “Characterization of general Radon integrals”, Dokl. Math., 82:1 (2010), 613–616  crossref  mathscinet  zmath  isi  elib  scopus
    4. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of Radon integrals as linear functionals”, J. Math. Sci., 185:2 (2012), 233–281  mathnet  crossref  mathscinet
    5. V. K. Zakharov, T. V. Rodionov, “A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions”, Math. Notes, 84:6 (2008), 756–770  mathnet  crossref  crossref  mathscinet  isi
    6. Zakharov V.K., “New classes of functions related to general families of sets”, Dokl. Math., 73:2 (2006), 197–201  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :136
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025