Abstract:
We prove that there are only finitely many symmetrical $2$-extensions of a locally finite graph whenever the automorphism group of the graph has an abelian subgroup of finite index (this case is of interest for certain applications). Some refinements and generalizations of this result are also given.
Keywords:
graph, group of automorphisms, symmetrical extension of graphs.
Citation:
V. I. Trofimov, “The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 290–303; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S169–S182
\Bibitem{Tro13}
\by V.~I.~Trofimov
\paper The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 290--303
\mathnet{http://mi.mathnet.ru/timm988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363323}
\elib{https://elibrary.ru/item.asp?id=20234997}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S169--S182
\crossref{https://doi.org/10.1134/S0081543814050198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903291455}
Linking options:
https://www.mathnet.ru/eng/timm988
https://www.mathnet.ru/eng/timm/v19/i3/p290
This publication is cited in the following 5 articles: