Abstract:
For some classes of systems described by ordinary differential equations, a survey of algorithms for the dynamic reconstruction of inputs is presented. The algorithms described in the paper are stable with respect to information noises and computation errors; they are based on methods from the theory of ill-posed problems as well as on appropriate modifications of N. N. Krasovskiis principle of extremal aiming, which is known in the theory of guaranteed control.
Citation:
Yu. S. Osipov, A. V. Kryazhimskii, V. I. Maksimov, “Some algorithms for the dynamic reconstruction of inputs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 129–161; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S86–S120
\Bibitem{OsiKryMak11}
\by Yu.~S.~Osipov, A.~V.~Kryazhimskii, V.~I.~Maksimov
\paper Some algorithms for the dynamic reconstruction of inputs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 129--161
\mathnet{http://mi.mathnet.ru/timm679}
\elib{https://elibrary.ru/item.asp?id=17869790}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S86--S120
\crossref{https://doi.org/10.1134/S0081543811090082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179070}
Linking options:
https://www.mathnet.ru/eng/timm679
https://www.mathnet.ru/eng/timm/v17/i1/p129
This publication is cited in the following 31 articles:
N. N. Subbotina, E. A. Krupennikov, “On a control reconstruction problem with nonconvex constraints”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S179–S193
V. L. Rozenberg, 2ND INTERNATIONAL CONFERENCE & EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022), 2943, 2ND INTERNATIONAL CONFERENCE & EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022), 2023, 050020
V. I. Maksimov, “On the reconstruction of an input disturbance in a reaction–diffusion system”, Comput. Math. Math. Phys., 63:6 (2023), 990–1000
N. N. Subbotina, E. A. Krupennikov, “Weak* Approximations to the Solution of a Dynamic Reconstruction Problem”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S142–S152
N. N. Subbotina, E. A. Krupennikov, “Weak* Solution to a Dynamic Reconstruction Problem”, Proc. Steklov Inst. Math., 315 (2021), 233–246
Maksimov I V., “On a Modification of the Dynamic Regularization Method”, Differ. Equ., 57:8 (2021), 1119–1123
M. S. Blizorukova, V. I. Maksimov, “Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control”, Comput. Math. Math. Phys., 61:3 (2021), 359–367
Yury S. Osipov, Vyacheslav I. Maksimov, “On dynamical input reconstruction in a distributed second order equation”, J. Inverse Ill-Posed Probl., 29:5 (2021), 707–719
Vyacheslav I. Maksimov, “The methods of dynamical reconstruction of an input in a system of ordinary differential equations”, Journal of Inverse and Ill-posed Problems, 29:1 (2021), 125
E. A. Krupennikov, “Properties of solutions of dynamic control reconstruction problems”, J. Phys.: Conf. Ser., 1864:1 (2021), 012034
V. K. Maksimov, “Ob odnom algoritme rekonstruktsii vozmuscheniya nelineinoi sistemy”, Tr. IMM UrO RAN, 26, no. 1, 2020, 156–166
B. R. Andrievsky, B. R. Andrievsky, I. B. Furtat, “Disturbance observers: methods and applications. I. Methods”, Autom. Remote Control, 81:9 (2020), 1563–1610
Evgenii Aleksandrovitch Krupennikov, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 239
Nina N. Subbotina, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 367
Elena Podivilova, Vladimir Shiryaev, 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2020, 1
Surkov P.G., “Dynamic Right-Hand Side Reconstruction Problem For a System of Fractional Differential Equations”, Differ. Equ., 55:6 (2019), 849–858
V. I. Maksimov, “Input reconstruction in a dynamic system from measurements of a part of phase coordinates”, Comput. Math. Math. Phys., 59:5 (2019), 708–717
Evgenii A. Krupennikov, Communications in Computer and Information Science, 1090, Mathematical Optimization Theory and Operations Research, 2019, 508
V. L. Rozenberg, “Dynamic reconstruction of disturbances in a quasilinear stochastic differential equation”, Comput. Math. Math. Phys., 58:7 (2018), 1071–1080
Subbotina N.N., “Hamiltonian Systems in Dynamic Reconstruction Problems”, IFAC PAPERSONLINE, 51:32 (2018), 136–140