Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 38–53 (Mi timm639)  

This article is cited in 11 scientific papers (total in 11 papers)

Sharp inequalities for trigonometric polynomials with respect to integral functionals

V. V. Arestovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural State University
References:
Abstract: The problem on sharp inequalities for linear operators on the set of trigonometric polynomials with respect to integral functionals 2π0φ(|f(x)|)dx is discussed. A solution of the problem on trigonometric polynomials with given leading harmonic that deviate the least from zero with respect to such functionals over the set of all functions φ determined, nonnegative, and nondecreasing on the semi-axis [0,+) is given.
Keywords: sharp inequalities for trigonometric polynomials, integral functional, trigonometric polynomials that deviate the least from zero.
Received: 10.08.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S21–S36
DOI: https://doi.org/10.1134/S0081543811050038
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: V. V. Arestov, “Sharp inequalities for trigonometric polynomials with respect to integral functionals”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 38–53; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S21–S36
Citation in format AMSBIB
\Bibitem{Are10}
\by V.~V.~Arestov
\paper Sharp inequalities for trigonometric polynomials with respect to integral functionals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 38--53
\mathnet{http://mi.mathnet.ru/timm639}
\elib{https://elibrary.ru/item.asp?id=15318486}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S21--S36
\crossref{https://doi.org/10.1134/S0081543811050038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959214386}
Linking options:
  • https://www.mathnet.ru/eng/timm639
  • https://www.mathnet.ru/eng/timm/v16/i4/p38
  • This publication is cited in the following 11 articles:
    1. A. O. Leont'eva, “Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in Lp-spaces, 0p, with classical value of the sharp constant”, Sb. Math., 214:3 (2023), 411–428  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91  mathnet  crossref  elib
    3. A. O. Leonteva, “Neravenstvo Bernshteina - Sege dlya trigonometricheskikh polinomov v prostranstve L0 s konstantoi bolshei, chem klassicheskaya”, Tr. IMM UrO RAN, 28, no. 4, 2022, 128–136  mathnet  crossref  elib
    4. A. O. Serkov, “O neravenstve Segë — Taikova dlya sopryazhennykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 21:4 (2015), 244–250  mathnet  mathscinet  elib
    5. P. Yu. Glazyrina, “Szego-Taikov Inequality For Conjugate Polynomials”, Comput. Methods Funct. Theory, 15:4, SI (2015), 595–603  crossref  mathscinet  zmath  isi  elib  scopus
    6. V. Arestov, M. Deikalova, “Nikol'skii Inequality Between the Uniform Norm and Lq-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708  crossref  mathscinet  zmath  isi  elib  scopus
    7. D. M. Kane, “Small Designs For Path-Connected Spaces and Path-Connected Homogeneous Spaces”, Trans. Am. Math. Soc., 367:9 (2015), 6387–6414  crossref  mathscinet  zmath  isi  elib  scopus
    8. Ivan E. Simonov, Polina Yu. Glazyrina, “Sharp Markov–Nikol'skii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, Journal of Approximation Theory, 192 (2015), 69  crossref
    9. E. D. Livshits, “A weak-type inequality for uniformly bounded trigonometric polynomials”, Proc. Steklov Inst. Math., 280 (2013), 208–219  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23  mathnet  crossref  mathscinet  isi  elib
    11. A. O. Leonteva, “Neravenstvo Bernshteina v L0 dlya proizvodnoi nulevogo poryadka trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 19, no. 2, 2013, 216–223  mathnet  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:699
    Full-text PDF :276
    References:88
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025