Abstract:
The problem on sharp inequalities for linear operators on the set of trigonometric polynomials with respect to integral functionals ∫2π0φ(|f(x)|)dx is discussed. A solution of the problem on trigonometric polynomials with given leading harmonic that deviate the least from zero with respect to such functionals over the set of all functions φ determined, nonnegative, and nondecreasing on the semi-axis [0,+∞) is given.
Keywords:
sharp inequalities for trigonometric polynomials, integral functional, trigonometric polynomials that deviate the least from zero.
Citation:
V. V. Arestov, “Sharp inequalities for trigonometric polynomials with respect to integral functionals”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 38–53; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S21–S36
\Bibitem{Are10}
\by V.~V.~Arestov
\paper Sharp inequalities for trigonometric polynomials with respect to integral functionals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 38--53
\mathnet{http://mi.mathnet.ru/timm639}
\elib{https://elibrary.ru/item.asp?id=15318486}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S21--S36
\crossref{https://doi.org/10.1134/S0081543811050038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959214386}
Linking options:
https://www.mathnet.ru/eng/timm639
https://www.mathnet.ru/eng/timm/v16/i4/p38
This publication is cited in the following 11 articles:
A. O. Leont'eva, “Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in Lp-spaces, 0⩽p⩽∞, with classical value of the sharp constant”, Sb. Math., 214:3 (2023), 411–428
V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91
A. O. Leonteva, “Neravenstvo Bernshteina - Sege dlya trigonometricheskikh polinomov v prostranstve L0 s konstantoi bolshei, chem klassicheskaya”, Tr. IMM UrO RAN, 28, no. 4, 2022, 128–136
A. O. Serkov, “O neravenstve Segë — Taikova dlya sopryazhennykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 21:4 (2015), 244–250
P. Yu. Glazyrina, “Szego-Taikov Inequality For Conjugate Polynomials”, Comput. Methods Funct. Theory, 15:4, SI (2015), 595–603
V. Arestov, M. Deikalova, “Nikol'skii Inequality Between the Uniform Norm and Lq-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708
D. M. Kane, “Small Designs For Path-Connected Spaces and Path-Connected Homogeneous Spaces”, Trans. Am. Math. Soc., 367:9 (2015), 6387–6414
Ivan E. Simonov, Polina Yu. Glazyrina, “Sharp Markov–Nikol'skii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, Journal of Approximation Theory, 192 (2015), 69
E. D. Livshits, “A weak-type inequality for uniformly bounded trigonometric polynomials”, Proc. Steklov Inst. Math., 280 (2013), 208–219
V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23
A. O. Leonteva, “Neravenstvo Bernshteina v L0 dlya proizvodnoi nulevogo poryadka trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 19, no. 2, 2013, 216–223