Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 3, Pages 19–37 (Mi timm37)  

This article is cited in 12 scientific papers (total in 12 papers)

Integral approximation of the characteristic function of an interval by trigonometric polynomials

A. G. Babenkoa, Yu. V. Kryakinb

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Mathematical Institute University of Wroclaw
References:
Abstract: We prove that the value En1(χh)L of the best integral approximation of the characteristic function χh of an interval (h,h) on the period [π,π) by trigonometric polynomials of degree at most n1 is expressed in terms of zeros of the Bernstein function cos{[ntarccos2q(1+q2)cost]/(1+q22qcost)}, t[0,π], q(1,1). Here, the parameters q, h, and n are connected in a special way; in particular, q=sechtgh при h=π/n.
Received: 03.05.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 264, Issue 1, Pages S19–S38
DOI: https://doi.org/10.1134/S0081543809050022
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 19–37; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S19–S38
Citation in format AMSBIB
\Bibitem{BabKry08}
\by A.~G.~Babenko, Yu.~V.~Kryakin
\paper Integral approximation of the characteristic function of an interval by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 19--37
\mathnet{http://mi.mathnet.ru/timm37}
\elib{https://elibrary.ru/item.asp?id=11929742}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S19--S38
\crossref{https://doi.org/10.1134/S0081543809050022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349153893}
Linking options:
  • https://www.mathnet.ru/eng/timm37
  • https://www.mathnet.ru/eng/timm/v14/i3/p19
  • This publication is cited in the following 12 articles:
    1. T. A. Garmanova, I. A. Sheipak, “Exact estimates for higher order derivatives in Sobolev spaces”, Moscow University Mathematics Bulletin, 79:1 (2024), 1–10  mathnet  crossref  crossref  elib
    2. Feixiang Chen, Qiang Zhang, Ping Wu, Yanan Zhao, Xiaotong Suo, Ao Xiao, Meifang Ke, Xiaohua He, Zan Tong, Yun Chen, “Green fabrication of seedbed-like Flammulina velutipes polysaccharides–derived scaffolds accelerating full-thickness skin wound healing accompanied by hair follicle regeneration”, International Journal of Biological Macromolecules, 167 (2021), 117  crossref
    3. Alexander G. Babenko, Yuriy V. Kryakin, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 35  crossref
    4. A. G. Babenko, Yu. V. Kryakin, “Modified Bernstein function and a uniform approximation of some rational fractions by polynomials”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 45–59  mathnet  crossref  crossref  isi  elib
    5. Yu. V. Malykhin, K. S. Ryutin, “Concentration of the L1-norm of trigonometric polynomials and entire functions”, Sb. Math., 205:11 (2014), 1620–1649  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 39–52  mathnet  crossref  isi  elib
    7. A. G. Babenko, N. V. Dolmatova, Yu. V. Kryakin, “Jackson's exact inequality with a special module of continuity”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 41–58  mathnet  crossref  isi  elib
    8. M. V. Deikalova, “Several extremal approximation problems for the characteristic function of a spherical layer”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 79–92  mathnet  crossref  isi  elib
    9. A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “On one of Geronimus's results”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S37–S48  mathnet  crossref  isi  elib
    10. N. A. Baraboshkina, “L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S59–S67  mathnet  crossref  isi  elib
    11. M. V. Deikalova, “The integral approximation of the characteristic function of a spherical cap by algebraic polynomials”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S74–S85  mathnet  crossref  isi  elib
    12. A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval and the Jackson inequality in C(T)”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S56–S63  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:732
    Full-text PDF :202
    References:60
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025