Abstract:
We prove that the value En−1(χh)L of the best integral approximation of the characteristic function χh of an interval (−h,h) on the period [−π,π) by trigonometric polynomials of degree at most n−1 is expressed in terms of zeros of the Bernstein function cos{[nt−arccos2q−(1+q2)cost]/(1+q2−2qcost)}, t∈[0,π], q∈(−1,1). Here, the parameters q, h, and n are connected in a special way; in particular, q=sech−tgh при h=π/n.
Citation:
A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 19–37; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S19–S38
\Bibitem{BabKry08}
\by A.~G.~Babenko, Yu.~V.~Kryakin
\paper Integral approximation of the characteristic function of an interval by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 19--37
\mathnet{http://mi.mathnet.ru/timm37}
\elib{https://elibrary.ru/item.asp?id=11929742}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S19--S38
\crossref{https://doi.org/10.1134/S0081543809050022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349153893}
Linking options:
https://www.mathnet.ru/eng/timm37
https://www.mathnet.ru/eng/timm/v14/i3/p19
This publication is cited in the following 12 articles:
T. A. Garmanova, I. A. Sheipak, “Exact estimates for higher order derivatives in Sobolev spaces”, Moscow University Mathematics Bulletin, 79:1 (2024), 1–10
Feixiang Chen, Qiang Zhang, Ping Wu, Yanan Zhao, Xiaotong Suo, Ao Xiao, Meifang Ke, Xiaohua He, Zan Tong, Yun Chen, “Green fabrication of seedbed-like Flammulina velutipes polysaccharides–derived scaffolds accelerating full-thickness skin wound healing accompanied by hair follicle regeneration”, International Journal of Biological Macromolecules, 167 (2021), 117
Alexander G. Babenko, Yuriy V. Kryakin, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 35
A. G. Babenko, Yu. V. Kryakin, “Modified Bernstein function and a uniform approximation of some rational fractions by polynomials”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 45–59
Yu. V. Malykhin, K. S. Ryutin, “Concentration of the L1-norm of trigonometric polynomials and entire functions”, Sb. Math., 205:11 (2014), 1620–1649
A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 39–52
A. G. Babenko, N. V. Dolmatova, Yu. V. Kryakin, “Jackson's exact inequality with a special module of continuity”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 41–58
M. V. Deikalova, “Several extremal approximation problems for the characteristic function of a spherical layer”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 79–92
A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “On one of Geronimus's results”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S37–S48
N. A. Baraboshkina, “L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S59–S67
M. V. Deikalova, “The integral approximation of the characteristic function of a spherical cap by algebraic polynomials”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S74–S85
A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval and the Jackson inequality in C(T)”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S56–S63