Abstract:
For the string vibration equation with given initial and final conditions, the problems of boundary control and
optimal control with given various multipoint intermediate conditions on the values of the deflection function and
on the velocities of points of the string are considered. The control is performed both by displacement of one end
with the other end fixed and by displacement at the two ends. The performance index is given for the whole time interval.
Using the method of separation of variables, the problem is reduced to the problem of control and optimal control of
ordinary differential equations with given initial, final, and unseparated multipoint intermediate conditions.
For all problems according to a single scheme using methods of control theory for finite-dimensional systems with
multipoint intermediate conditions, a constructive approach is proposed for finding functions of boundary control and
optimal control of string vibrations that ensure the fulfillment of multipoint intermediate conditions.
Keywords:
string vibrations, boundary control, vibration control, optimal control of vibrations, multipoint intermediate conditions.
Citation:
V. R. Barseghyan, “Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 38–52; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S66–S79
\Bibitem{Bar22}
\by V.~R.~Barseghyan
\paper Problems of Boundary Control and Optimal Control of String Vibrations with Multipoint Intermediate Conditions on the State Functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 38--52
\mathnet{http://mi.mathnet.ru/timm1926}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-38-52}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4555556}
\elib{https://elibrary.ru/item.asp?id=49352750}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S66--S79
\crossref{https://doi.org/10.1134/S0081543822060074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905214000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148358682}
Linking options:
https://www.mathnet.ru/eng/timm1926
https://www.mathnet.ru/eng/timm/v28/i3/p38
This publication is cited in the following 3 articles:
V. R. Barsegyan, S. V. Solodusha, E. V. Markova, “Optimalnoe granichnoe upravlenie kolebaniyami struny s zadannymi promezhutochnymi znacheniyami skorostei pri minimizatsii granichnoi energii”, Materialy 6 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024). Irkutsk, 16–20 sentyabrya 2024 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 240, VINITI, M., 2025, 3–18
S. A. Reshmin, M. T. Bektybaeva, “Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S168–S178
M. G. Grigoryan, “On Almost Universal Double Fourier Series”, Proc. Steklov Inst. Math. (Suppl.), 319:1 (2022), S129–S139