Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 7–26
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-7-26
(Mi timm1879)
 

On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space

G. A. Akishevab

a Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: We consider spaces of periodic functions of many variables, specifically, the Lorentz space Lp,τ(Tm) and the Nikol'skii–Besov space Sˉrp,τ,θB, and study the best M-term approximation of a function fLp,τ(Tm) by trigonometric polynomials. Order-exact estimates for the best M-term approximations of functions from the Nikol'skii–Besov class Sˉrp,τ1,θB in the norm of the space Lq,τ2(Tm) are derived for different relations between the parameters p, q, τ1, τ2, and θ.
Keywords: Lorentz space, Nikol'skii–Besov class, trigonometric polynomial, best M-term approximation.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08855579
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP08855579).
Received: 24.08.2021
Revised: 14.10.2021
Accepted: 18.10.2021
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 41A10, 41A25, 42A05
Language: Russian
Citation: G. A. Akishev, “On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 7–26
Citation in format AMSBIB
\Bibitem{Aki22}
\by G.~A.~Akishev
\paper On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 7--26
\mathnet{http://mi.mathnet.ru/timm1879}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-7-26}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531172}
\elib{https://elibrary.ru/item.asp?id=48072625}
Linking options:
  • https://www.mathnet.ru/eng/timm1879
  • https://www.mathnet.ru/eng/timm/v28/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :63
    References:69
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025