Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 86–99
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-86-99
(Mi timm1649)
 

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotic Behavior of Reachable Sets on Small Time Intervals

M. I. Gusevab, I. O. Osipova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (843 kB) Citations (9)
References:
Abstract: The geometric structure of small-time reachable sets plays an important role in control theory, in particular, in solving problems of local synthesis. In this paper, we consider the problem of approximate description of reachable sets on small time intervals for control-affine systems with integral quadratic constraints on the control. Using a time substitution, we replace such a set by the reachable set on a unit interval of a control system with a small parameter, which is the length of the time interval for the original system. The constraints on the control are given by a ball of small radius in the Hilbert space L2. Under certain conditions imposed on the controllability Gramian of the linearized system, this reachable set turns out to be convex for sufficiently small values of the parameter. We show that in this case the shape of the reachable set in the state space is asymptotically close to an ellipsoid. The proof of this fact is based on the representation of the reachable set as the image of a Hilbert ball of small radius in L2 under a nonlinear mapping to Rn. In particular, this asymptotic representation holds for a fairly wide class of second-order nonlinear control systems with integral constraints. We give three examples of systems whose reachable sets demonstrate both the presence of the indicated asymptotic behavior and the absence of the latter if the necessary conditions are not satisfied.
Keywords: control system, integral constraints, reachable set, convexity, asymptotics.
Received: 07.07.2019
Revised: 12.07.2019
Accepted: 05.08.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S52–S64
DOI: https://doi.org/10.1134/S0081543820040070
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
Language: Russian
Citation: M. I. Gusev, I. O. Osipov, “Asymptotic Behavior of Reachable Sets on Small Time Intervals”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 86–99; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S52–S64
Citation in format AMSBIB
\Bibitem{GusOsi19}
\by M.~I.~Gusev, I.~O.~Osipov
\paper Asymptotic Behavior of Reachable Sets on Small Time Intervals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 86--99
\mathnet{http://mi.mathnet.ru/timm1649}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-86-99}
\elib{https://elibrary.ru/item.asp?id=39323539}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S52--S64
\crossref{https://doi.org/10.1134/S0081543820040070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078493560}
Linking options:
  • https://www.mathnet.ru/eng/timm1649
  • https://www.mathnet.ru/eng/timm/v25/i3/p86
  • This publication is cited in the following 9 articles:
    1. Ivan O. Osipov, “Convexity of reachable sets of quasilinear systems”, Ural Math. J., 9:2 (2023), 141–156  mathnet  crossref
    2. Mikhail Gusev, Ivan Osipov, Lecture Notes in Computer Science, 13930, Mathematical Optimization Theory and Operations Research, 2023, 362  crossref
    3. M. I. Gusev, I. O. Osipov, “O zadache lokalnogo sinteza dlya nelineinykh sistem s integralnymi ogranicheniyami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 171–186  mathnet  crossref  mathscinet
    4. Mikhail Gusev, Ivan Osipov, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2022, 1  crossref
    5. I. O. Osipov, “O vypuklosti mnozhestv dostizhimosti po chasti koordinat nelineinykh upravlyaemykh sistem na malykh promezhutkakh vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 210–225  mathnet  crossref
    6. V. P. Maksimov, “O vnutrennikh otsenkakh mnozhestv dostizhimosti dlya nepreryvno-diskretnykh sistem s diskretnoi pamyatyu”, Tr. IMM UrO RAN, 27, no. 3, 2021, 141–151  mathnet  crossref  elib
    7. Mikhail I. Gusev, “On Asymptotics of Small-Time Reachable Sets for Nonlinear Systems with Isoperimetric Constraints”, IFAC-PapersOnLine, 54:14 (2021), 173  crossref
    8. Mikhail I. Gusev, “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Math. J., 6:1 (2020), 71–83  mathnet  crossref  mathscinet  zmath
    9. E. Bravyi, V. Maksimov, P. Simonov, “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics, 8:10 (2020), 1832  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:469
    Full-text PDF :119
    References:52
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025