Abstract:
The geometric structure of small-time reachable sets plays an important role in control theory, in particular, in solving problems of local synthesis. In this paper, we consider the problem of approximate description of reachable sets on small time intervals for control-affine systems with integral quadratic constraints on the control. Using a time substitution, we replace such a set by the reachable set on a unit interval of a control system with a small parameter, which is the length of the time interval for the original system. The constraints on the control are given by a ball of small radius in the Hilbert space L2. Under certain conditions imposed on the controllability Gramian of the linearized system, this reachable set turns out to be convex for sufficiently small values of the parameter. We show that in this case the shape of the reachable set in the state space is asymptotically close to an ellipsoid. The proof of this fact is based on the representation of the reachable set as the image of a Hilbert ball of small radius in L2 under a nonlinear mapping to Rn. In particular, this asymptotic representation holds for a fairly wide class of second-order nonlinear control systems with integral constraints. We give three examples of systems whose reachable sets demonstrate both the presence of the indicated asymptotic behavior and the absence of the latter if the necessary conditions are not satisfied.
Keywords:
control system, integral constraints, reachable set, convexity, asymptotics.
Citation:
M. I. Gusev, I. O. Osipov, “Asymptotic Behavior of Reachable Sets on Small Time Intervals”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 86–99; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S52–S64
\Bibitem{GusOsi19}
\by M.~I.~Gusev, I.~O.~Osipov
\paper Asymptotic Behavior of Reachable Sets on Small Time Intervals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 86--99
\mathnet{http://mi.mathnet.ru/timm1649}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-86-99}
\elib{https://elibrary.ru/item.asp?id=39323539}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S52--S64
\crossref{https://doi.org/10.1134/S0081543820040070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078493560}
Linking options:
https://www.mathnet.ru/eng/timm1649
https://www.mathnet.ru/eng/timm/v25/i3/p86
This publication is cited in the following 9 articles:
Ivan O. Osipov, “Convexity of reachable sets of quasilinear systems”, Ural Math. J., 9:2 (2023), 141–156
Mikhail Gusev, Ivan Osipov, Lecture Notes in Computer Science, 13930, Mathematical Optimization Theory and Operations Research, 2023, 362
M. I. Gusev, I. O. Osipov, “O zadache lokalnogo sinteza dlya nelineinykh sistem s integralnymi ogranicheniyami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 171–186
Mikhail Gusev, Ivan Osipov, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2022, 1
I. O. Osipov, “O vypuklosti mnozhestv dostizhimosti po chasti koordinat nelineinykh upravlyaemykh sistem na malykh promezhutkakh vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 210–225
V. P. Maksimov, “O vnutrennikh otsenkakh mnozhestv dostizhimosti dlya nepreryvno-diskretnykh sistem s diskretnoi pamyatyu”, Tr. IMM UrO RAN, 27, no. 3, 2021, 141–151
Mikhail I. Gusev, “On Asymptotics of Small-Time Reachable Sets for Nonlinear Systems with Isoperimetric Constraints”, IFAC-PapersOnLine, 54:14 (2021), 173
Mikhail I. Gusev, “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Math. J., 6:1 (2020), 71–83
E. Bravyi, V. Maksimov, P. Simonov, “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics, 8:10 (2020), 1832