|
Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions
N. A. Ilyasov Baku State University
Abstract:
The following results are proved in the paper.
Theorem 1. Let m⩾ and \sum_{n=1}^{\infty}n^{m-1}\omega_{l}(f;d/n)_{1,m}<\infty. Then f is equivalent to some function \psi\in C(\mathbb{T}^m) and
(a) \displaystyle \omega_{k}\Big(\psi;\frac{d}{n}\Big)_{\infty,m} \le C_{1}(k,l,m)\bigg\{\sum\limits_{\nu=n+1}^{\infty}\nu^{m-1}\omega_{l}\Big(f;\frac{d}{\nu}\Big)_{1,m}+\chi (\rho)n^{-k}\sum\limits_{\nu=1}^{n}\nu^{k+m-1}\omega_{l}\Big(f;\frac{d}{\nu}\Big)_{1,m}\bigg\},\quad n\in \mathbb N,
where \omega_{l}(f;\delta)_{1,m} is the l th-order complete modulus of smoothness of f, \omega_{k}(\psi;\delta)_{\infty,m} is the k th-order complete modulus of smoothness of \psi, \mathbb{T}^m=(-\pi,\pi]^{m}, d=\pi m^{1/2}, \chi(t)=0 for t\le 0, and \chi(t)=1 for t>0.
In the case l=k+m\ (\Rightarrow \chi(\rho)=0), the proof of estimate (a) relies substantially on the inequality
(b) \displaystyle n^{-k}\max\limits_{|\alpha|=k}\Big\|\frac{\partial^{|\alpha|}T_{n,\ldots,n;1}(f;x)} {\partial x^{\alpha}}\Big\|_{\infty,m} \le C_{2}(k,m)n^{m}\omega_{k+m}\Big(f;\frac{d}{n+1}\Big)_{1,m},\quad n\in \mathbb N,
where T_{n,\ldots,n;1}(f;x_{1},\ldots,x_{m}) is a polynomial of best L_{1}(\mathbb{T}^m)-approximation to f of order n\in \mathbb N with respect to the variable x_{i} (i=\overline{1,m}) and \alpha=(\alpha_{1},\ldots,\alpha_{m}), \alpha_{j} \in \mathbb Z_{+} (j=\overline{1,m}), is a multiindex of length |\alpha|=k. Inequality (b) is proved by using a multivariate version of Turan's type inequality: for each trigonometric polynomial t_{n_{1},\ldots,n_{m}}(x_{1},\ldots,x_{m}) of order n_{i} \in \mathbb N with respect to the variable x_{i} (i=\overline{1,m}), we have the inequality
(c) \displaystyle \Big\|\frac{\partial^{k}t_{n_{1},\ldots,n_{m}}(x)}{\partial x^{\alpha}}\Big\|_{\infty,m} \le \Big(\frac{\pi}{2}\Big)^m \Big\|\frac{\partial^{k+m}t_{n_{1},\ldots,n_{m}}(x_{1},\ldots,x_{m})}{\partial x_{1}^{\alpha_{1}+1}\ldots\partial x_{m}^{\alpha_{m}+1}}\Big\|_{1,m},
which follows directly from a similar inequality (with k=0 in inequality (c)) but holds under the conditions
\frac{1}{2\pi}\displaystyle\int\nolimits_{0}^{2\pi}t_{n_{1},\ldots,n_{i},\ldots,n_{m}}(x_{1},\ldots,x_{i}-y_{i},\ldots,x_{m})\, dy_{i}=0, i=\overline{1,m}.
Estimate (a) is order-sharp in the class H_{1,m}^l[\omega]=\{f\in L_1(\mathbb{T}^m):\ \omega_{l}(f;\delta)_{1,m} \le \omega (\delta), \delta \in (0,d]\}, where \omega \in \Omega_{l}(0,d] is the class of functions \omega =\omega (\delta) defined on (0,d] and satisfying the conditions 0<\omega (\delta)\downarrow 0\ (\delta \downarrow 0) and \delta^{-l}\omega(\delta)\downarrow(\delta\uparrow).
\bf{Theorem~2.} Let m\ge 1,\ l,k\in \mathbb N,\ l>m,\ \rho =l-(k+m),\ \omega \in \Omega_{l}(0,d], and \sum_{n=1}^{\infty}n^{m-1}\omega(d/n) <\infty. Then
\sup\Big\{ \omega_{k} \Big(\psi;\frac{d}{n}\Big)_{\infty,m}:\ f\in H_{1,m}^{l} [\omega]\Big\} \asymp \sum_{\nu=n+1}^{\infty}\nu^{m-1}\omega\Big(\frac{d}{\nu}\Big) +\chi(\rho) n^{-k}\sum_{\nu=1}^{n}\nu^{k+m-1}\omega\Big(\frac{d}{\nu}\Big),\quad n\in \mathbb N,
where \psi is the corresponding function from the class C(\mathbb{T}^m) equivalent to f\in H_{1,m}^{l}[\omega].
Keywords:
complete modulus of smoothness, multivariate version of Turan's type inequality, inequalities between moduli of smoothness of various order in different metrics, order-sharp inequality on a class.
Received: 18.03.2019
Citation:
N. A. Ilyasov, “Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 102–115
Linking options:
https://www.mathnet.ru/eng/timm1627 https://www.mathnet.ru/eng/timm/v25/i2/p102
|
Statistics & downloads: |
Abstract page: | 310 | Full-text PDF : | 104 | References: | 59 | First page: | 39 |
|