Abstract:
We present a refinement of a theorem of V.A. Abilov, F.V. Abilova, and M.K. Kerimov on the exact constant in a Jackson type inequality between the mean-square approximation of a function of a complex variable by Fourier series in a system orthogonal in a bounded domain and the generalized modulus of continuity of order m≥1.
Citation:
M. S. Saidusajnov, “Analysis of a theorem on the Jackson-Stechkin inequality in the Bergman space B2”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 217–224
\Bibitem{Sai18}
\by M.~S.~Saidusajnov
\paper Analysis of a theorem on the Jackson-Stechkin inequality in the Bergman space $B_2$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 217--224
\mathnet{http://mi.mathnet.ru/timm1588}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-217-224}
\elib{https://elibrary.ru/item.asp?id=36517712}
Linking options:
https://www.mathnet.ru/eng/timm1588
https://www.mathnet.ru/eng/timm/v24/i4/p217
This publication is cited in the following 2 articles: