Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 5–18
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-5-18
(Mi timm1571)
 

This article is cited in 3 scientific papers (total in 3 papers)

An inequality of different metrics in the generalized Lorentz space

G. A. Akishevab

a L. N. Gumilev Eurasian National University, Astana
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (246 kB) Citations (3)
References:
Abstract: The main goal of the paper is to prove the Jackson-Nikol'skii inequality for multiple trigonometric polynomials in the generalized Lorentz space Lψ,θ(Tm). In the first section we give definitions of a symmetric space of functions, a fundamental function, and the Boyd index of a space. In particular, we define the generalized Lorentz and Lorentz-Zygmund spaces. In addition, definitions of a weakly varying function and of the Lorentz-Karamata space are given. In the second section we prove an analog of the inequality of different metrics for multiple trigonometric polynomials in generalized Lorentz spaces Lψ,θ(Tm) with identical Boyd indices but different fundamental functions. In the Lorentz-Karamata space, the order-exact Jackson-Nikol'skii inequality for multiple trigonometric polynomials is obtained.
Keywords: Lorentz-Karamata space, Jackson-Nikol'skii inequality, trigonometric polynomial.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 29.08.2018
Revised: 23.11.2018
Accepted: 26.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A05, 42A10, 46E30
Language: Russian
Citation: G. A. Akishev, “An inequality of different metrics in the generalized Lorentz space”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 5–18
Citation in format AMSBIB
\Bibitem{Aki18}
\by G.~A.~Akishev
\paper An inequality of different metrics in the generalized Lorentz space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 5--18
\mathnet{http://mi.mathnet.ru/timm1571}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-5-18}
\elib{https://elibrary.ru/item.asp?id=36517695}
Linking options:
  • https://www.mathnet.ru/eng/timm1571
  • https://www.mathnet.ru/eng/timm/v24/i4/p5
  • This publication is cited in the following 3 articles:
    1. G. Akishev, “Estimates of the best approximations of the functions of the Nikol'skii-Besov class in the generalized space of Lorentz”, Adv. Oper. Theory, 6:1 (2021), 15  crossref  mathscinet  isi  scopus
    2. Gabdolla AKİSHEV, Lars Erik PERSSON, Harpal SİNGH, “Some New Fourier and Jackson-Nikol'skii Type Inequalities In Unbounded Orthonormal Systems”, Constructive Mathematical Analysis, 4:3 (2021), 291  crossref
    3. L. R. Ya. Doktorski, “Nikol'skii-type inequalities for trigonometric polynomials for Lorentz-Zygmund spaces”, J. Funct. space, 2020 (2020), 6853723  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :124
    References:51
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025