Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 266–279
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-266-279
(Mi timm1541)
 

This article is cited in 10 scientific papers (total in 10 papers)

Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints

F. S. Stonyakina, M. S. Alkousab, A. N. Stepanova, M. A. Barinova

a Crimea Federal University, Simferopol
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: The paper is devoted to new modifications of recently proposed adaptive Mirror Descent methods for convex minimization problems in the case of several convex functional constraints. Methods for problems of two types are considered. In problems of the first type, the objective functional is Lipschitz (generally, nonsmooth). In problems of the second type, the gradient of the objective functional is Lipschitz. We also consider the case of a nonsmooth objective functional equal to the maximum of smooth functionals with Lipschitz gradient. In all the cases, the functional constraints are assumed to be Lipschitz and, generally, nonsmooth. The proposed modifications make it possible to reduce the running time of the algorithm due to skipping some of the functional constraints at nonproductive steps. We derive bounds for the convergence rate, which show that the methods under consideration are optimal from the viewpoint of lower oracle estimates. The results of numerical experiments illustrating the advantages of the proposed procedure for some examples are presented.
Keywords: adaptive Mirror Descent, Lipschitz functional, Lipschitz gradient, productive step, nonproductive step.
Received: 30.03.2018
Bibliographic databases:
Document Type: Article
UDC: 519.85
MSC: 90C25, 90С06, 49J52
Language: Russian
Citation: F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, M. A. Barinov, “Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 266–279
Citation in format AMSBIB
\Bibitem{StoAlkSte18}
\by F.~S.~Stonyakin, M.~S.~Alkousa, A.~N.~Stepanov, M.~A.~Barinov
\paper Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 266--279
\mathnet{http://mi.mathnet.ru/timm1541}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-266-279}
\elib{https://elibrary.ru/item.asp?id=35060696}
Linking options:
  • https://www.mathnet.ru/eng/timm1541
  • https://www.mathnet.ru/eng/timm/v24/i2/p266
  • This publication is cited in the following 10 articles:
    1. S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin, “On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:4 (2024), 587  crossref
    2. O. S. Savchuk, M. S. Alkusa, F. S. Stonyakin, “O nekotorykh metodakh zerkalnogo spuska dlya zadach silno vypuklogo programmirovaniya s lipshitsevymi funktsionalnymi ogranicheniyami”, Kompyuternye issledovaniya i modelirovanie, 16:7 (2024), 1727–1746  mathnet  crossref
    3. M. S. Alkousa, F. S. Stonyakin, A. M. Abdo, M. M. Alcheikh, “Mirror Descent Methods with a Weighting Scheme for Outputs for Optimization Problems with Functional Constraints”, Rus. J. Nonlin. Dyn., 20:5 (2024), 727–745  mathnet  crossref
    4. S. S. Ablaev, F. S. Stonyakin, M. S. Alkousa, A. V. Gasnikov, “Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S1–S18  mathnet  crossref  crossref  mathscinet  elib
    5. Rashid Yarullin, Igor Zabotin, Communications in Computer and Information Science, 1881, Mathematical Optimization Theory and Operations Research: Recent Trends, 2023, 44  crossref
    6. A. Ivanova, F. Stonyakin, D. Pasechnyuk, E. Vorontsova, A. Gasnikov, “Adaptive mirror descent for the network utility maximization problem”, IFAC PAPERSONLINE, 53:2 (2020), 7851–7856  crossref  mathscinet  isi  scopus
    7. Mohammad S. Alkousa, Forum for Interdisciplinary Mathematics, Computational Mathematics and Applications, 2020, 47  crossref
    8. M. S. Alkousa, “On some stochastic mirror descent methods for constrained online optimization problems”, Kompyuternye issledovaniya i modelirovanie, 11:2 (2019), 205–217  mathnet  crossref
    9. F. S. Stonyakin, M.  Alkousa, A. N. Stepanov, A. A. Titov, “Adaptive mirror descent algorithms for convex and strongly convex optimization problems with functional constraints”, J. Appl. Industr. Math., 13:3 (2019), 557–574  mathnet  crossref  crossref
    10. Alexander A. Titov, Fedor S. Stonyakin, Alexander V. Gasnikov, Mohammad S. Alkousa, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 64  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :162
    References:59
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025