Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 103–115
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-103-115
(Mi timm1387)
 

This article is cited in 27 scientific papers (total in 27 papers)

On extremal properties of the boundary points of reachable sets for control systems with integral constraints

M. I. Gusev, I. V. Zykov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: It is well known that any control that steers the trajectory of a control system to the boundary of the reachable set satisfies the Pontryagin maximum principle. This fact is valid for systems with pointwise constraints on the control. We consider a system with quadratic integral constraints on the control. The system is nonlinear in the state variables and linear in the control. It is shown that any admissible control that steers the system to the boundary of its reachable set is a local solution of some optimal control problem with integral quadratic functional if the corresponding linearized system is completely controllable. The proof of this fact is based on the Graves theorem on covering mappings. This implies the maximum principle for the controls that steer the trajectories to the boundary of the reachable set. We also discuss an algorithm for constructing the reachable set based on the maximum principle.
Keywords: control system, integral constraints, reachable set, maximum principle.
Funding agency Grant number
Russian Science Foundation 16-11-10146
Received: 31.10.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 300, Issue 1, Pages 114–125
DOI: https://doi.org/10.1134/S0081543818020116
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
MSC: 93B03
Language: Russian
Citation: M. I. Gusev, I. V. Zykov, “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 103–115; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 114–125
Citation in format AMSBIB
\Bibitem{GusZyk17}
\by M.~I.~Gusev, I.~V.~Zykov
\paper On extremal properties of the boundary points of reachable sets for control systems with integral constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 103--115
\mathnet{http://mi.mathnet.ru/timm1387}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-103-115}
\elib{https://elibrary.ru/item.asp?id=28409371}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 300
\issue , suppl. 1
\pages 114--125
\crossref{https://doi.org/10.1134/S0081543818020116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433518400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047534225}
Linking options:
  • https://www.mathnet.ru/eng/timm1387
  • https://www.mathnet.ru/eng/timm/v23/i1/p103
  • This publication is cited in the following 27 articles:
    1. Nesir Huseyin, Anar Huseyin, Khalik G. Guseinov, “Approximation of the set of integrable trajectories of the control system with L2 norm constraints on control functions”, EECT, 2024  crossref
    2. M. S. Nikol'skii, “On the continuity of the optimal time as a function of the initial state for linear controlled objects with integral constraints on controls”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S147–S154  mathnet  crossref  crossref  isi  elib
    3. Valerii S. Patsko, Georgii I. Trubnikov, Andrei A. Fedotov, “Mnozhestvo dostizhimosti mashiny Dubinsa s integralnym ogranicheniem na upravlenie”, MTIP, 15:2 (2023), 89–104  mathnet
    4. Mikhail I. Gusev, “Computing the reachable set bounda for an abstract control system: revisited”, Ural Math. J., 9:2 (2023), 99–108  mathnet  crossref
    5. Ivan O. Osipov, “Convexity of reachable sets of quasilinear systems”, Ural Math. J., 9:2 (2023), 141–156  mathnet  crossref
    6. Nesir Huseyin, “Approximation of the image of the L
      p ball under Hilbert-Schmidt integral operator”, Demonstratio Mathematica, 56:1 (2023)  crossref
    7. Nesir HÜSEYİN, “Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”, Düzce üniversitesi Bilim ve Teknoloji Dergisi, 11:4 (2023), 1772  crossref
    8. Anar HUSEYİN, “İntegrallenebilir Yörüngeleri ve Kontrol KaynaklarıK{\i}s{\i}tlıolan Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”, Kafkas üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16:1 (2023), 24  crossref
    9. V. S. Patsko, G. I. Trubnikov, A. A. Fedotov, “Reachable Set of the Dubins Car with an Integral Constraint on Control”, Dokl. Math., 108:S1 (2023), S34  crossref
    10. N. Huseyin, A. Huseyin, Kh. G. Guseinov, “On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions”, Tr. IMM UrO RAN, 28, no. 3, 2022, 274–284  mathnet  crossref
    11. M. I. Gusev, I. O. Osipov, “O zadache lokalnogo sinteza dlya nelineinykh sistem s integralnymi ogranicheniyami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 171–186  mathnet  crossref  mathscinet
    12. Anar Huseyin, “On the p-integrable trajectories of the nonlinear control system described by the Urysohn-type integral equation”, Open Mathematics, 20:1 (2022), 1101  crossref
    13. V. N. Ushakov, V. I. Ukhobotov, A. V. Ushakov, I. V. Izmest'ev, “Control Systems of Variable Structure. Attainability Sets and Integral Funnels”, J Math Sci, 260:6 (2022), 820  crossref
    14. N. Huseyin, A. Huseyin, Kh. G. Guseinov, “On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation”, Tr. IMM UrO RAN, 27, no. 3, 2021, 263–270  mathnet  crossref
    15. V. N. Ushakov, A. V. Ushakov, “O navedenii integralnoi voronki upravlyaemoi sistemy na tselevoe mnozhestvo v fazovom prostranstve”, Izv. IMI UdGU, 56 (2020), 79–101  mathnet  crossref
    16. N. Huseyin, “On the properties of the set ofp-integrable trajectories of the control system with limited control resources”, Int. J. Control, 93:8 (2020), 1810–1816  crossref  mathscinet  zmath  isi  scopus
    17. A. Huseyin, N. Huseyin, Kh. G. Guseinov, “Approximation of the integral funnel of a nonlinear control system with limited control resources”, Minimax Theory Appl., 5:2, SI (2020), 327–346  mathscinet  zmath  isi
    18. Mikhail Gusev, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1  crossref
    19. Mikhail Gusev, Lecture Notes in Computer Science, 11958, Large-Scale Scientific Computing, 2020, 48  crossref
    20. A. A. Ershov, A. V. Ushakov, V. N. Ushakov, “An approach problem for a control system and a compact set in the phase space in the presence of phase constraints”, Sb. Math., 210:8 (2019), 1092–1128  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:846
    Full-text PDF :214
    References:73
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025