Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 4, Pages 311–319
DOI: https://doi.org/10.21538/0134-4889-2016-22-4-311-319
(Mi timm1376)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Jackson–Stechkin inequality with nonclassical modulus of continuity

M. Sh. Shabozova, A. D. Farozovab

a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
b Khorog State University
Full-text PDF (193 kB) Citations (1)
References:
Abstract: We obtain an estimate for the best mean-square approximation $E_{n-1}(f)$ of an arbitrary complex-valued $2\pi$-periodic function $f\in L_{2}$ by the subspace $\Im_{2n-1}$ of trigonometric polynomials of degree at most $n-1$ in terms of the nonclassical modulus of continuity $\omega_{2m-1}^{*}(f,\delta)_{2}$ generated by a finite-difference operator of order $2m-1$ with alternating constant coefficients equal to 1 in absolute value. The following relation is proved for any natural $n\ge1$ and $m\ge2$:
$$ \sup_{\substack{f\in L_{2}\\ f\ne const}}\frac{E_{n-1}(f)}{\left(\displaystyle\frac{n}{2}\int_{0}^{\pi/n}\Big\{\omega_{2m-1}^{*}(f,t)\Big\}^{2}\sin ntdt\right)^{1/2}}={\frac{1}{\sqrt{2}}\Big(m-\sum\limits_{l=1}^{m-1}\frac{l}{4(m-l)^{2}-1}\Big)^{-1/2}}. $$
Keywords: best approximation, nonclassical modulus of continuity, Jackson–Stechkin inequality, convex function.
Received: 02.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42A10, 41A17, 41A44
Language: Russian
Citation: M. Sh. Shabozov, A. D. Farozova, “The Jackson–Stechkin inequality with nonclassical modulus of continuity”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 311–319
Citation in format AMSBIB
\Bibitem{ShaFar16}
\by M.~Sh.~Shabozov, A.~D.~Farozova
\paper The Jackson--Stechkin inequality with nonclassical modulus of continuity
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 311--319
\mathnet{http://mi.mathnet.ru/timm1376}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-311-319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590944}
\elib{https://elibrary.ru/item.asp?id=27350148}
Linking options:
  • https://www.mathnet.ru/eng/timm1376
  • https://www.mathnet.ru/eng/timm/v22/i4/p311
  • This publication is cited in the following 1 articles:
    1. I. A. Martyanov, “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sb., 21:1 (2020), 247–258  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :68
    References:54
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025