Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 47–54
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-47-54
(Mi timm1289)
 

This article is cited in 1 scientific paper (total in 1 paper)

A trajectory in R3 concealed from observers

V. I. Berdyshev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (162 kB) Citations (1)
References:
Abstract: In the problem of tracking by observers of an object moving in R3, the most concealed trajectory is characterized under the condition that the object is at any time visible to at most two observers.
Keywords: navigation, tracking problem, moving object, observer.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Received: 01.03.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 27–34
DOI: https://doi.org/10.1134/S0081543817050042
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: 00A05
Language: Russian
Citation: V. I. Berdyshev, “A trajectory in R3 concealed from observers”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 47–54; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 27–34
Citation in format AMSBIB
\Bibitem{Ber16}
\by V.~I.~Berdyshev
\paper A trajectory in $\mathbb {R}^3$ concealed from observers
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 47--54
\mathnet{http://mi.mathnet.ru/timm1289}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-47-54}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559160}
\elib{https://elibrary.ru/item.asp?id=26040812}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 27--34
\crossref{https://doi.org/10.1134/S0081543817050042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029210786}
Linking options:
  • https://www.mathnet.ru/eng/timm1289
  • https://www.mathnet.ru/eng/timm/v22/i2/p47
  • This publication is cited in the following 1 articles:
    1. I. V. Berdyshev, V. B. Kostousov, “Extremal problems of navigation by geophysical fields”, Eurasian J. Math. Comput. Appl., 6:2 (2018), 4–18  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :70
    References:64
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025