Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 250–263 (Mi timm1162)  

This article is cited in 12 scientific papers (total in 12 papers)

Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation

A. A. Uspenskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The problem of the appearance of nonsmooth singularities in generalized solutions of first-order PDEs is studied. The Dirichlet boundary value problem is considered for an eikonal-type equation. The subject of the research is pseudovertices of the boundary set. Pseudovertices are useful for the analytic and numerical construction of branches of the singular set, i.e., the set where the solution of the boundary value problem is nonsmooth. Necessary conditions for the existence of pseudovertices are obtained in the case when a nonconvex boundary set has smooth boundary. The conditions are written in terms of constant curvature and constant coordinate functions defining the boundary of the set.
Keywords: first-order PDE; minimax solution; wavefront; diffeomorphism; eikonal; optimal result function; singular set; symmetry.
Received: 10.12.2014
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: Russian
Citation: A. A. Uspenskii, “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 250–263
Citation in format AMSBIB
\Bibitem{Usp15}
\by A.~A.~Uspenskii
\paper Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 250--263
\mathnet{http://mi.mathnet.ru/timm1162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3407899}
\elib{https://elibrary.ru/item.asp?id=23137994}
Linking options:
  • https://www.mathnet.ru/eng/timm1162
  • https://www.mathnet.ru/eng/timm/v21/i1/p250
  • This publication is cited in the following 12 articles:
    1. P. D. Lebedev, A. A. Uspenskii, “Metod Nyutona pri postroenii singulyarnogo mnozhestva minimaksnogo resheniya v odnom klasse kraevykh zadach dlya uravnenii Gamiltona — Yakobi”, Chelyab. fiz.-matem. zhurn., 9:1 (2024), 63–76  mathnet  crossref
    2. P. D. Lebedev, A. A. Uspenskii, “Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case”, Sb. Math., 215:9 (2024), 1224–1248  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. A. A. Uspenskii, P. D. Lebedev, “On singularity structure of minimax solution to Dirichlet problem for eikonal type equation with discontinuous curvature of boundary of boundary set”, Ufa Math. J., 13:3 (2021), 126–151  mathnet  crossref  isi
    4. P. D. Lebedev, A. A. Uspenskii, “Postroenie rasseivayuschikh krivykh v odnom klasse zadach bystrodeistviya pri skachkakh krivizny granitsy tselevogo mnozhestva”, Izv. IMI UdGU, 55 (2020), 93–112  mathnet  crossref
    5. P. D. Lebedev, A. A. Uspenskii, “Elementy analiticheskogo konstruktora reshenii v klasse zadach upravleniya po bystrodeistviyu s tselevym mnozhestvom s razryvnoi kriviznoi granitsy”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 370–386  mathnet  crossref
    6. A. A. Uspenskii, P. D. Lebedev, “Svoistva nestatsionarnykh psevdovershin kraevogo mnozhestva pri razryve gladkosti krivizny ego granitsy v zadache Dirikhle dlya uravneniya tipa eikonala”, Sib. elektron. matem. izv., 17 (2020), 2028–2044  mathnet  crossref
    7. A. A. Uspenskii, P. D. Lebedev, “Vyyavlenie singulyarnosti u obobschennogo resheniya zadachi Dirikhle dlya uravneniya tipa eikonala v usloviyakh minimalnoi gladkosti granitsy kraevogo mnozhestva”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 59–73  mathnet  crossref  elib
    8. V. N. Ushakov, A. A. Uspenskii, A. A. Ershov, “Alfa-mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh prilozheniya v teorii upravleniya”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 14:3 (2018), 261–272  mathnet  crossref  elib
    9. P. D. Lebedev, A. A. Uspenskii, “Construction of singular sets in a velocity control problem with nonconvex target”, IFAC-PapersOnLine, 51:32 (2018), 681–686  crossref  isi  scopus
    10. A. A. Uspenskii, P. D. Lebedev, “Evklidovo rasstoyanie do zamknutogo mnozhestva kak minimaksnoe reshenie zadachi Dirikhle dlya uravneniya Gamiltona-Yakobi”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 797–804  mathnet  crossref  elib
    11. A. A. Uspenskii, P. D. Lebedev, “The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 191–202  mathnet  crossref  mathscinet  isi  elib
    12. P. D. Lebedev, A. A. Uspenskii, “Postroenie funktsii optimalnogo rezultata i rasseivayuschikh linii v zadachakh bystrodeistviya s nevypuklym tselevym mnozhestvom”, Tr. IMM UrO RAN, 22, no. 2, 2016, 188–198  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :86
    References:67
    First page:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025