Abstract:
We consider properties of broadly understood measurable spaces that provide the preservation of maximality when ultrafilters are restricted to filters of the corresponding subspace. We study conditions that guarantee the convergence of images of ultrafilters consisting of open sets under continuous mappings.
Citation:
E. G. Pytkeev, A. G. Chentsov, “On the structure of ultrafilters and properties related to convergence in topological spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 250–267; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 164–181
\Bibitem{PytChe14}
\by E.~G.~Pytkeev, A.~G.~Chentsov
\paper On the structure of ultrafilters and properties related to convergence in topological spaces
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 250--267
\mathnet{http://mi.mathnet.ru/timm1075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364156}
\elib{https://elibrary.ru/item.asp?id=21585641}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 164--181
\crossref{https://doi.org/10.1134/S0081543815050156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932650723}
Linking options:
https://www.mathnet.ru/eng/timm1075
https://www.mathnet.ru/eng/timm/v20/i2/p250
This publication is cited in the following 4 articles:
A. G. Chentsov, “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 54 (2019), 74–101
E. G. Pytkeev, A. G. Chentsov, “Open ultrafilters and separability with the use of the operation of closure”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 177–190
E. G. Pytkeev, A. G. Chentsov, “Nekotorye svoistva otkrytykh ultrafiltrov”, Izv. IMI UdGU, 2015, no. 2(46), 140–148
A. G. Chentsov, E. G. Pytkeev, “Some topological structures of extensions of abstract reachability problems”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 36–54