Abstract:
We use a generalized differentiation operator to construct a generalized shift operator, which makes it possible to define a generalized convolution operator in the space $H(\mathbb C)$. Next, we consider the characteristic function of this operator and introduce a generalized Laplace transform. We study the homogeneous equation of the generalized convolution operator, investigate its solvability, and consider the multi-point Vallée Poussin problem.
Citation:
V. V. Napalkov, A. U. Mullabaeva, “On one class of differential operators and their application”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 201–214; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 142–155
\Bibitem{NapMul14}
\by V.~V.~Napalkov, A.~U.~Mullabaeva
\paper On one class of differential operators and their application
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 201--214
\mathnet{http://mi.mathnet.ru/timm1042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364204}
\elib{https://elibrary.ru/item.asp?id=21258495}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 142--155
\crossref{https://doi.org/10.1134/S0081543815020145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958239988}
Linking options:
https://www.mathnet.ru/eng/timm1042
https://www.mathnet.ru/eng/timm/v20/i1/p201
This publication is cited in the following 4 articles:
S. G. Merzlyakov, “Interpolation by Generalized Exponential Series”, Math. Notes, 109:1 (2021), 94–101
V. V. Napalkov, A. U. Mullabaeva, “Kratnaya interpolyatsionnaya zadacha Valle Pussena”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 63–77
V. V. Napalkov, K. R. Zimens, “Zadacha Valle Pussena v yadre operatora svertki na poluploskosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:2 (2015), 283–292
Zimens K.R., Napalkov V.V., “the Multiple de La Vallee-Poussin Problem on Convex Domains in the Kernel of the Convolution Operator”, Dokl. Math., 90:2 (2014), 581–583