Processing math: 100%
Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2013, Volume 21, Number 1, Pages 52–62 (Mi timb185)  

Generalized soluble AFM-groups

O. Yu. Dashkova

Dnepropetrovsk National University
References:
Abstract: We study an RG-module A such that R is an associative ring, G is a group, CG(A)=1 and each proper subgroup H of a group G for which A/CA(H) is not a minimax R-module, is finitely generated. A group G with these conditions is called an AFM-group. It is proved that a locally soluble AFM-group G is hyperabelian in the case where R=Z is a ring of integers. It is described the structure of an AFM-group G in the case where G is a finitely generated soluble group, R=Z is a ring of integers and the quotient module A/CA(G) is not a minimax Z-module.
Received: 11.01.2013
Document Type: Article
UDC: 512.544
Language: Russian
Citation: O. Yu. Dashkova, “Generalized soluble AFM-groups”, Tr. Inst. Mat., 21:1 (2013), 52–62
Citation in format AMSBIB
\Bibitem{Das13}
\by O.~Yu.~Dashkova
\paper Generalized soluble $\mathrm{AFM}$-groups
\jour Tr. Inst. Mat.
\yr 2013
\vol 21
\issue 1
\pages 52--62
\mathnet{http://mi.mathnet.ru/timb185}
Linking options:
  • https://www.mathnet.ru/eng/timb185
  • https://www.mathnet.ru/eng/timb/v21/i1/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :140
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025